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Introduction

Tilt rotor aircraft have great potential for civil aviation
applications because of their ability to emulate both helicopters and
turboprop aircraft. The tilt rotor may become an efficient mode of
commuter transportation by reducing air traffic congestion at major
airports via its ability to land and take off in densely populated
urban centers. To be successful in this role, the tilt rotor must
prove itself to be a ‘good neighbor' by meeting FAA standards for
noise pollution. In effect, the future of the civilian tilt rotor may be
determined by the aircraft's ability to operate quitely in take off,
landing and the conversion corridor.

The development and commercialization of tilt rotor aircraft
will offer a dynamic new dimension to the improvement of air
travel. While the concept of Vertical and Short Take Off and
Landing (VSTOL) aircraft is not new,' the recent developments in
materials technologies, propulsion, and fly by wire systems has
made the tilt rotor a technological reality. The maturing of this
technology has the potential to produce sweeping changes in the
aircraft industry as the demand increases for more specialized
commercial aircraft. The jumbo jet as the industry work horse may
be replaced by specialized aircraft optimized for well-defined
mission performance. This change is already apparent in the
renewed interest in supersonic trans-pacific flight and a recent
increase in demand for low speed commuter aircraft. Tilt rotor
aircraft may help redefine the current world wide air traffic

patterns by their ability to operate efficiently in both hover and



forward flight. This makes the tilt rotor ideally suited as a short-to
-medium range transport, shuttling passengers to and from densely
populated areas. Also, the tilt rotor offers an economic boost to the
helicopter industry which will have to adapt to the shrinking
demand for military helicopters. The helicopter industry has the
opportunity to expand its civil aircraft market by taking the lead in
developing this new application of rotary technology. The potential
for tilt rotor aircraft is limited only by technological development.

Aeroacoustics, the study of aerodynamically generated sound,
has always been important to the growth of the modern aircraft
industry. Without past aeroacoustic improvements, commercial jets
would not be tolerated. Unacceptably high noise levels in the
1960's resulted in protests by people living near airports. Since
then a major emphasis has been on lowering the noise emitted by
aircraft. In fact, the Federal Aviation Administration has strict
guidelines on aircraft noise emissions, and some airports have even
stricter rules limiting the hours and frequency with which certain
aircraft may take off and land. This makes an aircraft's far field
acoustics a design issue to be considered in the early stages of
development.

The tilt rotor is no exception. The far field acoustic signature
must be considered in the early design stages in order to develop a
commercially viable and competitive aircraft.

However, the design for reduced noise is difficult for any
rotor craft as the noise mechanisms are quite complex and not yet
completely understood. The difficulty of this analysis stems from

the relatively large number of noise mechanism which may be



important for a given design. These mechanisms result from
aerodynamic interactions between the rotor, the wake and the air
frame. Reducing one mechanism may increase another. Also,
various mechanisms affect different parts of the acoustic spectrum.
As a result, one needs to understand an array of aeroacoustic
mechanisms in order to design quieter aircraft.

Tilt rotor aircraft have several novel features which
profoundly affect their aeroacoustic characteristics and therefore,
noise reduction potential. Their rotor and rotor/wake aerodynamics
are different from either helicopters or conventional aircraft as they
operate in and between various helicopter and airplane flight
modes. Tilt rotors derive their additional operational modes from
their ability to adjust nacelle tilt and balance the required lift
between the rotors and wings. Additional adjustments can be made
by changing the cyclic pitch and elevators. These additional degrees
of freedom create a wide envelope of operations which can be
optimized for performance and noise radiation. For example,
descent can be accomplished with high or low nacelle tilt, high or
low glide slope, and various airspeeds for each condition.

Unfortunately, the wide range of operational geometries and
conditions result in almost all aeroacoustic mechanisms being a
dominant noise source in some flight regime for some observer
angle.

Operational parameters relevant to tilt rotor aeroacoustics
include the different paths of the tip vortices in the wake, high disk

loading, blade phasing between the two rotors, noise directionality

affects due to the orientation of the nacelles with respect to



observers, dynamic blade loadings associated with high blade twist
and rapidly changing flow conditions. Perhaps most importantly,
the unique tilt rotor aerodynamics results in strong unsteady rotor-
wake-body interactions which causes high noise levels in the
acoustic far field.

Recently, many studies have been conducted on the broad
subject of tilt rotor aeroacoustics. Large amounts of experimental
data have been reported which provides analysts with an
abundance of high quality data for study and comparison to
predictions.

This study is comprised of three main investigations: hover
aerodynamics, discrete noise, and broadband noise. The
aerodynamics of a hovering tilt rotor are examined experimentally
using a 1/12 scale model. The recirculating fountain flow is of
primary interest as it has been found to cause an important noise
mechanism. The results of the hover flow experiments are used to
develop and validate aerodynamic models which are used as inputs
to noise prediction codes. Two sets of predictions are developed,
one for discrete frequency noise and one for broad band noise.
These predictions are compared to experimental data for the XV-15
in hover. Many of the results presented in this thesis have be

previously reported in the literaturel.2.3.4,



Chapter I

Relevant Aeroacoustic Theory

Aeroacoustics is the study of aerodynamically generated
sound. In the case of tilt rotor sound radiation, which is studied
here, the noise is a result of the interaction between the rotor
blades and the flow field. This problem can be generalized to the
study of the sound field generated by a surface moving through a
fluid. In this case, the moving surface is a lifting rotor blade

moving in a circular path.

1.1 wes Willj wki

The interaction between a moving surface and a fluid can
generate sound in several ways. The most obvious mechanism for a
lifting rotor is that the surface imparts a force on the fluid due to
lift and drag. The force distributed on the surface can be thought of
as a pressure on the fluid. If the force varies in time, an unsteady
pressure field is generated in the fluid. This phenomenon is known
as aerodynamic noise. Another mechanism is due to the fact that
the moving surface displaces a volume of fluid equivalent to its own
volume as it moves through the flow field. This volume
displacement is equivalent to a change in momentum of the fluid.
The rate of change of momentum is dimensionally the same as a
force acting on the fluid and therefore may generate sound. The
last mechanism by which a moving surface may generate sound is

by disturbing the flow such that the flow field is no longer



continuous or steady. Examples include shock formation, turbulence
and separated flow about surfaces.

These physical mechanisms can be analyzed using some
results of Ffowcs Williams and HawkingsS. They derived an exact
expression for the sound field generated by a surface moving
through a moving or stationary fluid. The result is called the Ffowcs
Williams and Hawkings equation. The method is sketched as
follows:

First consider a volume, V, of fluid with flow velocity u;.
Divide the volume into two regions, 1 and 2, with a surface
discontinuity, S, to be identified with a solid body's surface which is
moving with some velocity, vi. Now assume some function, f=0,
defines the surface of discontinuity, S, in such a way that f<0O in
region 1 and f>0 in region 2. Thus 3(f), the one dimensional delta
function, will be zero everywhere except where f=0. This leads to

the the generalized mass equation 2.5 of reference 5.

ot t axil = [pCui-vi) I (D3, (1.1)

The overbar denotes that the variable is a generalized variable

valid throughout V, and u; is the component of fluid velocity in the

xj direction. The representation [ ]ﬁ)) implies the difference of the

contents between regions 2 and 1. This equation shows that
satisfying mass conservation between regions 1 and 2 requires a
distribution of mass sources on the boundary S. The strength of

these sources is the difference between the mass flux requirement



of each region. The generalized momentum equation, equation 2.6
of reference S5, is written in a similar manner:

d(pui) d(puiy; +T>i—') N
3 aij 1 [pij + pui(uj'Vj)]((zl))S(f) gx_J

(1.2)

pij is the compressive stress acting on the fluid. Note that if the
surface of discontinuity, S, is removed, these two equations reduce
to continuity and momentum equations for compressible inviscid
flow.

These forms of the continuity and momentum equations can
be applied to sound generation by a moving surface by taking
region 1 to be the region of the fluid inside S. Inside this control
volume, the fluid is assumed to be at rest, with density p, and
pressure po. pij has the same mean value, podij, on either side of the
surface and therefore its derivative is zero. Redefine pjj to be the
difference of the stress tensor from its mean value. Then pijj = 0 in
region 1 where the fluid is at rest. For an impermeable moving
surface of discontinuity such as a rotor blade, up = vo where n is
the unit normal out of the surface from region 1 to 2. Thus in
region 2 the mass and momentum conservation rules can be written

as (equation 2.7 of reference 5):

3p 3(pui) 3
3 * ax = Povidhg, o (1.3)




3 pui) 3 pujuj +pij) of
ot aij - = pij 8 3 oxj (1.4)

The inhomogeneous wave equation, equation 2.8 of reference 5, for
sound generated by the moving surface is found by eliminating pu;

from the above two equations.

FTy 3 af
(atz ) )( P=Po ) = oxidxj ~ 9Ixj (Pij S(f)a)(j)
0 of
+3t (PoVn 8(f)ax } (1.5)

The dependent variable has been changed to the generalized

density perturbation, p-p,, which is a measure of the acoustic
sound amplitude. Tj; is the Lighthill stress tensor, Tj; = pujuj + pjj -
cz(p-po)Sij, outside the surface and zero within the surface. Sound

generation due to the Tjj term is generally related to high Mach

number turbulent flows or to shock waves. It is not considered in
this study of tilt rotor aeroacoustics as it is a less important
mechanism for a hovering tilt rotor.

Equation 1.5 is an exact expression for the sound generation
and propagation in a compressible inviscid fluid. This expression
shows that sound is generated by a surface moving through a fluid
by three mechanisms. The Tjj; term represents acoustic quadrupoles
distributed throughout the region exterior to the surface of
discontinuity. This term includes such flow phenomenon as shocks
and separated flow. The other two mechanisms are relevant to the

tilt rotor noise mechanisms studied here. The pj; term can be



interpreted as a distribution of acoustic dipoles on the surface of a
discontinuity. Likewise, the p,vi term can be interpreted as surface
distribution of acoustic monopoles. The dipole distribution is a
result of the force acting on the fluid generated by the surface, and
the monopole distribution is due to the displacement effect of the
surface moving through the fluid. These effects require a source
distribution which varies with time, space, or both in order to

generate sound.

1.2 Solution to the Inhomogeneous Wave Equation

Equation 1.5 can be expressed more generally as an
inhomogeneous wave equation of the form:

9% 9%
5§-a—mf=g(&t) (1.6)

where p is redefined as the perturbation density, p-po. g(x,t) is the

forcing term and represents the right hand side of the Ffowcs
Williams Hawkings equation, equation. 1.5. p(x,t) can be found from
this equation by using the Green's function method. The formal

solution of the inhomogeneous wave equation is:

+00
p(x) = [dV [g(x.) -G dt (1.7)
Vv -00

where G .is the free space Green's function,



8(‘! -t o+ Cr_)

0
G= . 1.8
41tc02r (1.8)

V is the volume enclosing the fluid and can be considered to be of
infinite extent. The observer distance, r, is the distance between
the observer and source. The mean speed of sound, cy, is based on
ambient conditions. The variable T is a dummy variable of
integration and t is the observer time.

Using the properties of the Dirac delta function, the

integration over T can be carried out giving:

g2(Xx,t)

p(x,t) = J[ r ]dV. (1.9)
\Y%

Here square brackets indicate evaluation of the argument at the

retarded time, T. T =1 - :—0. Replacing g(x,t) with the right hand side

of equation 1.5 and recognizing that 6(f) is zero everywhere but on

the surface of discontinuity gives:

92 T:: d piinj
2 _ ij ijnj
4meo”p(X) = 35,3x; J [rll-M,l] dv(n) - axij [rll-Mrl] dS(n)
v S

d
2 ([ ascn. (1.10)
S
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where v is the normal component of velocity of the surface of
discontinuity S, M; is the component of the source Mach number in
the observer direction and V represents the volume of infinite
extent surrounding S. The surface integrals are integrated with
respect to the Lagrangian coordinates m which move with the

surface S.

1.3  Application to Tilt Rotor Aeroacoustics

The far field acoustics of the tilt rotor due to direct surface
(rotor) fluid interactions (force and displacement mechanisms) can

be found by integrating:

P iy p
4mcZp(X.t) = - aXiJ' [Tllil-‘;i‘ﬁ] dS(n) + 5{'[ [rlplLl\;;l—] dS(n).
S S

(1.11)

over the surface of the rotor blade at the retarded times. The most
popular method for doing this integration is a numerical integration
over a collapsing sphere. Consider a sphere centered on the
observer with some large radius. Collapse the sphere toward the
observer such that the radius decreases at a rate equal to the speed
of sound. The integrands contribute to the acoustic signal only
when the surface of the sphere intersects the surface of
discontinuity, S.

This integration technique presupposes that pjj, povn, the

surface geometry, and the motion of the surface are known a priori.
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Unfortunately, this is generally not the case. For the tilt rotor, pjj is
the pressure distribution on the surface of the rotor blade (due to
lift and drag), and povn is the momentum flux due to the fluid
displacement by the rotor blade. S is defined by the rotor blade
geometry and while the motion for a hovering rotor is circular in
general, it may have perturbation motions due to flapping, lead-lag,
and feathering. For rotor noise in general, the terms of interest are

referred to as:

blade loading noise: ai_‘[ [rﬁ“"M‘ |] ds(n) (1.12)
1 - r
S
bl . . g PoVn
ade thickness noise: 3 i-MJ dS(n) (1.13)
S

Consequently, the solution to the tilt rotor acoustics problem
reduces to an aerodynamic and computational problem. The
thickness noise is purely a function of the blade geometry and
motion which are determined by the operating parameters of the
rotorcraft. The geometry is assumed to be known and blade
motions can be simplified in the hover configuration by neglecting
aeroelastic effects.

The loading noise for a blade with constant lift translating in a
fluid at rest is zero. For a rotating blade with constant lift, sound is
radiated due to the acceleration of the steady force. The case of the

hovering tilt rotor is complicated because the blade is rotating

12



through a 'random’ turbulent flow field superposed on a time-mean
flow field which is itself spatially varying due to the partial ground
plane effect of the wing beneath the rotor. This results in a non-
deterministic blade loading superposed on a spatially varying mean
lift distributed over the surface of the moving blade.

The spatially varying mean loading, rotor geometry and rotor
motions can be modelled mathematically based on aerodynamic
theory and then used to evaluate the integrals of equation 1.11.
Chapter II studies the aerodynamics of a hovering tilt rotor and
Chapter III uses these results to develop the required mathematical
models for evaluation of equation 1.11 based on mean quantities.

However, the random loading noise of the blade cannot be
evaluated using the Ffowcs Williams and Hawkings equation
directly. The random loading due to the turbulent flow field cannot
be defined as a deterministic function of space and time. Other
aeroacoustic methods must be used to calculate the random, or
broad band, loading noise. In general, this problem is solved in the
frequency domain by calculating the power spectral density of the
acoustic pressure fluctuations. Tilt rotor broad band noise

prediction methods are described in Chapter IV.
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Chapter II

Tilt Rotor Hover Aerodynamics

This chapter details the results of flow visualization studies
and inflow velocity field measurements performed on a 1/12 scale
model of the XV-15 tilt rotor aircraft in the hover mode. The
complex recirculating flows were studied visually using neutrally
buoyant soap bubbles and quantitatively using hot wire
anemometry. Still and video photography were used to record the
flow patterns. This work was previously presented in a paper by
Coffen, George, Hardinge, and Stevenson at the 1991 Technical

Specialists Meeting of the American Helicopter Society!.

2.1 General Tilt Rotor Aerodynamics

In the operation of a tilt rotor aircraft in hover, the presence
of the wing and fuselage beneath the rotor affects the aerodynamics
by introducing complex unsteady recirculating flows. The
fundamental geometry of the tilt rotor aircraft, shown in figure
2.1a-b, consists of prop-rotors mounted on tiltable nacelles which
are located at or near the tips of a fixed (non-tilting) wing. The
prop-rotor is sufficiently large so that the benefits of low disk
loading are gained for efficient hover flight. The prop-rotor is
designed to provide the desired performance balance between the
axial-flow hover requirement and the axial-flow airplane mode
requirement6.7.8.  The tilt rotor introduces a number of unique
prop-rotdr/airframe aerodynamic interactions that must be

addressed to properly understand the significant performance
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issues. In hover mode the wing and fuselage provide a partial
ground plane in the near wake which causes the development of an
inboard-bound spanwise flow over the wing and fuselage surface.
At the aircraft's longitudinal plane of symmetry, the opposing flows
collide, producing an unsteady “fountain flow" with upward velocity
components which is then reingested by the rotors. Full analytical
representation of this flow would require a three dimensional, time
varying, turbulent, rotor/rotor, and rotor/airframe interaction
model.

Some characteristics of tilt rotor flows have been studied both
experimentally and analytically. Experimental tests on large and
full scale models have been used to study the down load on the
wing in the hover condition9.10.11.12.13_ This problem is of great
interest as 10%-15% of the rotor lift is needed to overcome the
down force on the wing caused by the downwash flow over the
wing. All of these tests used one wing and rotor and an image plane
rather than a complete mock up. According to the study by Felker
and Light!3 the size of the image plane can have a profound effect
on the test results. One previous experimental study of the tilt
rotor hover condition not limited to downwash and down loads was
by Rutherfordl4. In this test smoke and tuft flow visualization
techniques were used on a model consisting of a single wing and
rotor. An image plane was used to simulate the two rotor/wing
flow phenomena.

The study by Fejtek and Robertsl5 attempts to analytically
study the flow of a tilt rotor XV-15 in hover by numerically solving

the unsteady, thin layer compressible Navier-Stokes Equation.
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While the results of this study are encouraging, not all the major
features of tilt rotor hover flow are captured in the computation. In
particular, this study included only a wing and rotor image system
in the calculation. Attempts at modeling tilt rotor hover flow by
assuming a plane of symmetry and disregarding the fuselage will be
shown here to be insufficient.

While a full analytical representation may be desirable in the
long term, a more expedient method is required for generating data
needed for current aerodynamic and aeroacoustic calculations and
design. Thus a 1/12 scale model (consisting of two rotors, wing, and
fuselage) of the XV-15 tilt rotor was built in order to determine and
quantify the complex flows about a hovering tilt rotor. This model
enables the study of the unsteadiness and the side to side shifting
of the fountain flow which were found to occur. These phenomena
had not been previously explored as prior tests had relied on an
image plane to simulate the tilt rotor hover configuration and had
also excluded the fuselage. The present results show important
flow phenomenon along and above the length of the fuselage. Also,
attempts to model the flow analytically require accurate and
complete experimental information for comparison and validation.

Previous tests had not been adequate in this respect.

2.2 Experimental Setup

The scale of the model was determined by the size of the
largest commercially available model propeller, which was 24 inch
diameter with a pitch of 8 inches. Electric motors were chosen to

power the model. No attempt was made to Mach scale the rotor tip
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speed. As the rotor pitch and twist were scaled approximately, the
ratio of tip speed to induced velocity will be approximately scaled.
Most fixed speed electric motors operate at either 1700 or 3450
rpm. In order to obtain higher inflow velocities (less relative error
for the measuring equipment available), a motor speed of 3450 rpm
was chosen. Two 1.5 hp motors were used. The motors were
uncoupled as coupled motors would have been difficult to
implement and maintain. The uncoupled motors were operated at
the same speed by controlling one motor's speed with a variac and
matching speeds with a stroboscope. We do not expect that the lack
of phase locking between the rotors will be significant as the rotor
tip speed is much greater than the induced velocity giving many tip
vortices and associated wake structures per unit axial length. The
motors spin in opposite directions so that the blades rotate towards
the tail as they pass over the wing, as in the actual aircraft. The
motors are located approximately 7 inches below the wing, far
enough below the rotors to be out of the flow yet not so far as to
make shaft whirl a problem.

The wing and fuselage were both constructed using a
styrofoam base covered with fiberglass, filler and paint. The
horizontal and vertical tail were not installed in the tests reported
here. The wing is removeable and has adjustable flaps and
flaperons to allow for testing of various wing configurations. The
model is mounted on a steel frame to withstand the lift of the rotors
and reduce vibration. The model is supported by a wooden |
structure elevated above the floor such that the rotor plane is 60.75

inches above the ground. This corresponds to a hover height of
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60.75 scale feet. Figure 2.2 shows the the experimental set up
including the model, electric motors and test stand. The model was
operated in an area of dimensions greater than 25 feet. The nearest
significant objects in the room were approximately 10 feet away.
The orientation and placement of the model in the room was found

not to affect the observed and measured flow.

2.3 FElow Visualization

A bubble generator is a very effective tool for visualizing the
complex flows of the model XV-15. The Model 3 Sage Action
Incorporated Bubble Generator combines compressed air, helium,
and a soap solution to produce neutrally-buoyant helium filled
bubbles16. The bubbles follow the pathlines of the flow and are
able to accurately trace the intricate flow patterns of the hovering
tilt rotor. Rubber tubing and an aluminum tube wand were used to
insert the bubbles at various locations in the flow. During the
experiment, the room was darkened and a high intensity Varian arc

lamp was used to illuminate the bubbles.

2.3.1 Results of Still Photographs

The flow around a hovering tilt rotor is extremely unsteady.
Still photographs were used to capture various features of the flow.
It must be noted that these are instantaneous visualizations. ASA
1600 film was used, with an f-stop of 5.6, and 0.25 to 1.0 second
exposure times. Greater exposure times produced pictures with too
many 'cluttered’ pathlines and smaller exposure times did not allow

enough light. Still photographs were taken of the front and side of
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the model. Unless otherwise obvious, the bubbles were inserted in
the longitudinal plane of symmetry. In order to view a two
dimensional slice of the the flow patterns, the light source was
situated perpendicular to the direction of the camera.

Figure 2.3 is a top view schematic of the model and indicates
the aircraft axis and probe locations for the various experiments.

The images presented here are computer enhancements of the
original stills which were digitized using a scanner. Figure 2.4
shows an unenhanced photo. Figure 2.5 is the same photo which
has been inverted (negative image) to show the pathlines as black
streaks on a white background. The contrast of the scanned images
was improved to better define the bubble streaks. This process
often caused a blurring of the model with the background. Also,
light reflected off the model caused distracting shadows and in
many cases obliterated the outline of the model. In order to reduce
this annoying affect, the outline of the model was enhanced and the
background edited to clarify the image and remove distracting
shadows. In no cases were the bubble streaks or any part of the
flow embellished or edited.

Figure 2.5 is a head on photo of the model with the bubbles
being injected directly over the intersection of the longitudinal axis
and the rotor/rotor axis. This figure clearly shows the recirculating
fountain and indicates the height of the fountain to be
approximately 1/2 the radius of the rotor. This figure also shows
an unsteady stagnation point on the fuselage where the spanwise
flows intersect and erupt up between the two rotors and are then

reingested. Figure 2.6 emphasizes the reingestion part of the flow
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as bubbles inserted just above the unsteady stagnation point are
convected up between the rotors where they are entrained into the
induced flow and are reingested. Figure 2.7 indicates the extremely
turbulent nature of the fountain flow near the unsteady stagnation
point. Here bubbles are injected horizontally along the longitudinal
axis. The random direction of the pathlines, the sharp lateral
perturbations, and the fact that the bubbles are injected at the same
location in the flow and follow completely dissimilar paths, all
indicate the highly unsteady and turbulent nature of the fountain
flow. Note that all of these images project the 3-D flow onto a plane
and that information about the flow out of the plane is lost. Figure
2.8 shows bubbles being injected off center and shows the spanwise
flow curling up before reaching the longitudinal axis. This figure
also shows one bubble being convected from the center of the
fountain into the interior of the -rotor disk and another being
convected into the opposite rotor. Presumably these events are due
to particularly large turbulent eddies being ingested.

The next four figures, figures 2.9-2.12, illustrate the fountain
flow from the side and clearly illustrate the multi-dimensional
nature of the recirculating fountain flow. These aspects of the flow
are difficult to explain as the images show several recirculation
paths. Note that the model used in this study did not include a tail
wing assembly which may have some minor influence on the
fountain flow over the rear of the fuselage.

The pathlines of the bubbles over the rear of the fuselage
depend strongly on their point of injection. Figure 2.9 shows

bubbles being injected above the tail, over the longitudinal axis, and
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above the rotor plane. The bubbles are swept horizontally along the
longitudinal axis and are ingested into the rotors to both sides of the
upflow shown in Figure 2.5. The bubbles pass through the rotor
plane and travel back towards the tail along the fuselage. Here the
bubbles recirculate upward above the rotor plane and are
eventually reingested. Figure 2.10 shows the bubbles being
injected along the fuselage near the tail. This photo differs from the
one above in that the bubbles are injected below the rotor plane.
The bubbles are lifted off the fuselage and are entrained in the
recirculating flow along and above the fuselage. Figure 2.11 shows
what happens when bubbles are injected over the wing, over the
longitudinal axis, and below the the rotor. This probe placement is
similar to that of figure 2.6 but the photo is from a different view.
Here the bubbles are convected up between the rotors and are
dispersed rearward and to one or the other side of the fuselage
where they are reingested. Figure 2.12 demonstrates how the near
laminar inflow becomes distorted and erratic as it interacts with the
recirculating fountain flow over the fuselage. Unlike the coherent
flow structures provided by the head on photos, these images do
not indicate any distinct flow pattern which can be said to
characterize the flow above the fuselage. Most likely, the entire
region from the wing/fuselage intersection rearward on the
fuselage represents an unsteady stagnation zone. This flow is
characterized by low velocity highly turbulent flow. The flow along
the fuselage tends to be entrained up between the two rotors and-
reingested through the rotors in a cyclical process. The pathlines

are dependent on the point of origin, but it appears that bubbles
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injected anywhere above the fuselage may eventually enter this
stagnation zone and become reingested.

The most important conclusion that can be drawn from these
photos is that the fountain is not a phenomenon which can be
viewed or analyzed in two dimensions. This flow is multi-
directional and includes spanwise flow along the wings and
unsteady flow along the fuselage. Both of these components exhibit

turbulent upward flow paths which result in reingestion of the flow.

2.3.2 Results of Video Recording

In order to record the strong time dependence of the flow,
video recordings of the bubble pathlines were also made. Bubbles
were inserted in various places in the flow to show various
pathlines. The location of insertion point is very important for
visualizing different flow phenomenon. One important feature of
the video recordings is the availability of slow motion and frame-
by-frame advance. The downwash velocities are fast enough to
make it difficult for the human eye to see all there is to see in the
video at standard speeds. The frame-by-frame advance shows 0.04
second intervals. Between frames, the pathlines disappear and new
pathlines appear as bubbles move in and out of the stream of light.
This demonstrates the gross unsteadiness in the flow and
demonstrates the 3-dimensional nature of the flow. This is an
important point because the recorded images show the fountain
flow superimposed on a 2D plane. In fact, the fountain flow is
omni-directional and must be studied from all angles in order to

fully appreciate the complexity of the flow.
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Another important phenomenon of the flow documented with
video was the side-to-side switching of the fountain. This effect is
most apparent when the model is viewed head on and bubbles are
injected above the rotor plane. The recirculating flow is seen to
switch randomly from side to side in time. The time scale of this
phenomenon was measured to be anywhere from 0.04 seconds or
less (frame advance time) to 0.75 seconds. The fluctuation is
characterized by the fountain flow being reingested mostly into one
of the two rotors. This switching indicates the unsteadiness of the
stagnation region on and above the fuselage. The asymmetry of this
phenomenon shows that modeling the fountain flow with one rotor
and an image plane is inadequate for studying the time varying

properties of the flow.

2.4 Hot Wire Experiments -

Hot wire anemometry was another technique used to help
characterize the fountain flow. These experiments were conducted
with a single wire probe. Unless otherwise indicated, the wire was
parallel to the plane of the rotor and was oriented parallel to the
longitudinal axis. The anemometer was connected to a Macintosh
based data acquisition system. Three experiments are reported.
The first experiment was an attempt to characterize the
unsteadiness of the flow by examining time traces of velocity
measurements. For these measurements, a sampling rate of 4000
samples per second for one second was used. Another experiment
was to measure the spectrum of turbulence due to the recirculating

fountain. For this experiment the sampling rate was 30,000
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samples per second. 214 evenly spaced samples were used to find
the spectrum. The last experiment was an attempt to quantify the
mean and rms inflow velocities over the rotor plane. The mean
velocity spatial variations are affected by the wing obstructing the
rotor wake, and the rms velocity spatial variations are affected by
the reingestion of the fountain turbulence. 625 locations one inch
above the rotor plane were measured. A sampling rate of 40

samples per second for 15 seconds was used.

2.4.1 Time Traces

The unsteadiness of the location and turbulent intensity of the
fountain flow is evident from time traces of velocity at various
points in the flow. figure 2.13a-b compare two 0.13 second time
series of inflow velocity measured 2 inches from the tip on the
rotor/rotor axis and one inch abeve the rotor plane (in the fountain
reingestion zone of the rotor). Refer to figure 2.3 for a schematic of
the model and measurement locations. Based on the results of the
flow visualization study, this location was chosen as a reference
point because it is more or less centered in the reingestion area.
These series show how the inflow can be either intermittently
laminar, essentially showing only the blade passing, figure 2.13a, or
very turbulent, figure 2.13b, due to reingestion of the wake. Figure
2.14 gives an example of the intermittency of the phenomenon as
this sample shows a nearly laminar inflow broken by a 0.05 second
burst of turbulence followed by a return to laminar flow. A study
of a 4.0 second series, figure 2.15, did not indicate any discernable

pattern in the period of intermittency.  Figure 2.16 shows a time
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trace over the outboard section of the rotor plane, one inch above
the rotor and 2 inches from the tip on the rotor/rotor axis. Here the
inflow is laminar and is undisturbed by the turbulent fluctuating
recirculating fountain flow. Another interesting observation is that
the peak inflow velocity due to the potential flow is 2 m/s greater
in figure 2.16 than in figure 2.13a. This result is due to the wing
obstructing the flow inboard and will be discussed in more detail
below.

The height of the fountain was also studied by taking time
traces at 1, 3, and 5 inches above the rotor plane at the point 2
inches inboard of the rotor tip on the rotor/rotor axis (in the
fountain reingestion zone of the rotor). figures 2.17a-c show the
progression of heights. The velocity fluctuations due to the
potential flow associated with each blade passage decreases with
increasing height. The amplitude of fluctuations due to the
reingested fountain turbulence decreases from 1 to 3 inches above
the rotor plane, but does not decrease as much between 3 and 5
inches above the rotor plane. The fluctuations are more rapid at the
1 and 3 inch heights than the 5 inch height. This indicates that the
smaller turbulent eddies are reingested at a lower height and that
only large scale eddies are recirculated to greater heights above the
rotor plane. This result can also be seen in the flow visualization
photos as the pathlines become less erratic as they travel higher
above the rotor plane. This information may be useful for future
attempts to ameliorate the fountain affect by reducing or

eliminating its high frequency content.
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Velocity versus time traces were also used to study the
fountain flow above the fuselage. Figure 2.18a-e show series at five
locations on the longitudinal axis one inch above the rotor plane.
These figures show how the flow is recirculated preferentially to
the rear of the aircraft. The velocity fluctuations fall off drastically
as the probe is moved forward of the wing while remaining fairly
constant as the probe is moved rearward. Figure 2.18e is of special
interest as it shows large rapid fluctuations one rotor radius behind
the wing/fuselage intersection. This shows that the longitudinal
recirculating flow is not a minor or secondary affect and should be
studied further as it may effect many operational characteristics
such as hover performance, stability, and interior cabin noise.

Time traces were also generated for the case of the hot wire
centered between the two rotors over the wing and one inch above
the rotor plane with one and twe rotors spinning. A comparison of
these two half second traces, figure 2.19a-b, shows how the two
rotors and wing and fuselage create a highly turbulent recirculating
flow. The trace with one rotor running, figure 2.19a, only shows
variations corresponding to the blade passage and some very mild
disturbances of magnitude less than 1 m/s due to ambient room
turbulence. With both rotors spinning, figure 2.19b, the
recirculating flow causes fluctuations of magnitudes as great as 14

m/s.

2.4.2 Turbulence Spectra

The time traces described above are meant to provide a more

qualitative view of the relative magnitudes and intermittency of the
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flow components measured by a single hot wire. Another
experiment was to quantify the nature of the fountain turbulence.
The spectrum of velocity squared was calculated from a stream of
velocity measurements from a single hot wire. Figure 2.20
compares the power spectrum of inflow velocities measured by a
single wire probe 1 inch above the rotor plane and 2 inches from
the tip on the rotor/rotor axis in the reingestion zone. The top
curve shows the turbulence due to the reingestion of the fountain
flow. The lower curve is the power spectrum of the ambient inflow
turbulence which was found by taking measurements with only one
rotor spinning and the model removed from the experiment. Both
spectra show the blade passing harmonics at integer multiples of
approximately 113 Hz. This plot shows that there is 5 to 10 times
more energy per unit frequency in the fountain turbulence than in
the room turbulence for frequencies between 10 Hz and 2 kHz. This
plot also shows that the spectral energy for the two cases becomes
more similar at frequencies higher than 10 kHz. The greater low
frequency content of the fountain inflow may be due to the
intermittency discussed above while the increased high frequency
velocity fluctuations are due to the reingestion of the turbulent

recirculating fountain flow.

2.4.3 Mean _and rms Inflow Velocities

Mean and rms velocities were also measured on an evenly
spaced 25" by 25" square grid 1 inch above the rotor plane. Three
grids of data were taken for the three Cartesian orientations of the

hot wire. Reduction of this data was complicated by several factors.
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A fully three dimensional turbulent flow cannot be quantified using
a single wire hot wire unless some assumptions are made about the
relative magnitudes of the velocity components. Also, the grid of
hot wire measurements would have been better oriented in a
cylindrical coordinate system as this would best fit the geometry of
a hovering rotor. A Cartesian system was used as the available
traverse was not appropriate for moving the probe with respect to
radius and azimuthal angle. The data then had to be reduced in
cylindrical coordinates. In order to do this, the theta component of
mean velocity was assumed to be negligible compared to the radial
and axial mean velocities. Another complicating factor was that the
data was taken with a single wire probe which meant that data
points had to be measured separately for each hot wire orientation.
This leaves the possibility for error due to inexact probe placement
for each set of measurements. Another source of error is that the
rms values of velocity are sometimes more than 20% of the mean
velocity which implies that King's Law is less accurate!7. Future
measurements will be conducted with an x-wire.

Figure 2.21a is a contour plot showing the axial component of
inflow velocity measured without the wing and fuselage assembly.
This plot shows the spatially uniform inflow that results when the
wing does not obstruct the flow. Figure 2.21b is a contour plot
showing the axial component of mean velocity over the rotor plane
measured with the wing and fuselage assembly. Comparing to
figure 2.21a, there is clearly a deficit in the inflow velocity over the
wing. The deficit is recognizable by lighter shading over the wing

and lower valued contours. As has been hypothesized previously,!8
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Figure 2.21a Axial component, Vz, of mean inflow velocity without
wing and fuselage assembly. Square border indicates
grid boundary. Plot shows port rotor, rotor spins
clockwise, wing and body are to the right of the grid.
Darker shading corresponds to higher velocity.
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Figure 2.21b Axial component, Vz, of mean inflow velocity with
wing and fuselage assembly. Square border indicates
grid boundary. Plot shows port rotor, rotor spins
clockwise, wing and body are to the right of the grid.
Darker shading corresponds to higher velocity. Note
lighter shading over the wing.
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this deficit is due to the wing obstructing the flow beneath the
rotor. While these results are not accurate enough to precisely
model the fountain flow, they are conclusive in showing this
important phenomenon of tilt rotor hover flow.

Figure 2.22 is a plot of the rms velocity over the rotor plane.

This contour plot uses values obtained from three orthogonal sets of

hot wire data and plots the values of YV Vx2 + Vy'2 + V2. No
attempt was made to reduce this data to component form for the
following reason; While the turbulence is most likely isotropic at
higher frequencies, the data was measured 1" above the rotor plane
and therefore it also reflects the velocity fluctuations due to the
potential flow field (blade passage). Thus we are unable to present
the rms velocities by component as we are unable to precisely
separate the potential flow velocity fluctuations from the velocity
fluctuations due to the inflow turbulence. Qualitatively, the
existence of the potential flow is not a problem as the turbulent
velocity fluctuations in the reingestion zone are significantly greater
than those caused by the potential flow field. This is apparent from
figure 2.22 which shows the reingestion zone as a region of high
rms velocities (darker shading) on the inboard section of the rotor.
These high values are a result of the turbulent fountain flow

recirculating into the inflow where it is measured as velocity

fluctuations by the hot wire. This plot also shows higher rms values
towards the rear of the grid which indicates that the flow is
reingested in the rearward side of the rotor/rotor axis. This region

of high rms velocities corresponds to the reingestion region

observed in the flow visualization study.
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Chapter III
Discrete Noise Predictions Using WOPWOP

This chapter presents the methodology and results of noise
prediction calculations carried out to study thickness and loading
discrete frequency harmonic noise mechanisms of the XV-15 Tilt
Rotor Aircraft in hover. In particular, the loading noise caused by
the fountain/ground plane effect is investigated using WOPWOPI19, a

rotor noise prediction program developed by NASA Langley.

3.1 WOPWOP Aecroacoustic Theory

WOPWOP is a noise prediction program developed by the
NASA Langley Research Center to predict helicopter main rotor
noise. WOPWOP calculates discrete frequency noise of helicopter
rotors by employing the most advanced acoustic formulation of
Farassat and allows for realistic helicopter blade geometry, motions
and aerodynamic loadings. The blade geometry, motions and
loadings must be input by the user through FORTRAN subroutines,
and the accuracy of the output depends almost entirely on the
accuracy of this input.

The theoretical basis for the WOPWOP code stems from the
Ffowcs Williams and Hawkings equation discussed in Chapter I.

Equation 1.11 is presented here with the following substitutions:
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d d li
4mp'(x) = 5; J [ﬁ%] ds(n) - 3 j [rll-Mrl] ds(n)
f=0 f=0

(3.1)

The density perturbation has been replaced by the acoustic
pressure, p' = cozp, the compressive stress tensor, pjjnj, has been
replaced by the force per unit area on the fluid, l;, and the surface
of integration, S, is defined by some function, f = 0. The spatial
derivative of the loading noise can be converted to a time
derivative by starting with the formal solution of equation 1.5 and

using the relation:

(3.2)

Fy [5_(,;_)]_ 13 [ﬁ&g)} £id(g)
oxil4nr | “cot| 4ar | 4nrr?

d of
prior to the integration of delta function in the - g(pij S(f)‘a;]
1 J

term. This gives the following result:
' _1__8_ CoPoVn * lr] 1y
AP (%D = 55t H M) 95() - f r2|1-MrI:| a5t
f=0 f=0

(3.3)

In this formulation, termed "formulation 1" by Farassat20, I, = LT
and represents the force on the fluid per unit area in the radiation
direction. "Formulation 1A" is derived by taking the time

derivative into the integral. This improves accuracy of the
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numerical differentiation. The result is given here from reference

19 as:

p'(x,t) = pp'(x.t) + pL(X,1)

4npr'(x.1) = J [—E"V"—] ds(n)

r(1-M;)?
=0
p0Vn(rMi?i + CoM r- CoMz)
* J [ 2(1-Mp)? }ds(“)
=0
1 Iif Ip - 1iM
4Tp; '(x.t) = é—o [r(l-Mr)z] dS(n) + J [rz(l-Mr)z] dS(n)
f=0 f=0
1 [ [1(rMiTi + coM - oM ?)
* o J [ - r2(1-Mp)3 ]ds(")
=0
(3.4)

Here "and p, ' represent the thickness and loading noise (acoustic
Pt PL Tep g

pressure) generated by the rotor. The dots over variable represent
differentiation with respect to source time, not observer time.

This formulation is valid for any defined blade motion and
geometry. The acoustic sources, monopoles and dipoles, are defined
on the blade surface and will include any defined aerodynamic
loading. This expression calculates the near-field, 1/r2, and far- .
field, 1/r, terms explicitly, though this study is primarily interested

in the tilt rotor far field acoustics. Future studies could investigate



the near field noise of a hovering tilt rotor and its affect on cabin
noise using this formulation.

This formulation is coded in the WOPWOP rotor noise
prediction program. The code requires the user to write three input
subroutines which describe the geometry and aerodynamics of the
aircraft main rotor. WOPWOP also makes use of a name list data file
which defines the operating conditions and motions of the rotor.
Two sets of input routines were developed for this study, one set
for the metal blades used initially on the XV-15, and a set for the
Advanced Technology Blade, ATB, rotors. The metal blade routines
were developed for predictions based on a limited experimental
data base. The ATB routines were developed as a result of a joint

XV-15 aeroacoustics study by Cornell and Lockheed personnel4.

3.2 Description of Metal Blade Input Routines

The three input subroutines define a mathematical model of
the XV-15 by making use of theoretical aerodynamics, data given in
the Tilt Rotor Research Aircraft Familiarization Document21, and
experimental data for two dimensional airfoils. Perhaps the most
important aspect of this model is the characterization of the inflow
velocity field. As was documented in chapter II, the wing below
the rotor acts as a partial ground plane which causes a decrement in
the inflow velocity over the wing. This change in inflow causes a
change is angle of attack of the rotor blade as it passes over the
wing. The net affect is a azimuthally varying loading distribution

on the rotor blade. This effect is modeled in the input routines and
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is seen to be the dominant discrete frequency noise mechanism in
hover.

The following describes the FORTRAN subroutines used as
input for WOPWOP. The organization of this description parallels
the WOPWOP user's manual by defining the variables as they

appear in the manual.

3.2.1 Subroutine FUNE?2
This routine defines the main rotor blade geometry in the
radial direction. The parameters of interest in this routine are the

geometric twist of the blade, chord width, thickness and camber.

Geometric Twist:

The geometric twist of the blade is defined by two linear
functions of radial position. One function covers the rotor blade
from r=0 to r=1/2R and the other covers the rotor blade from
r=1/2R to R. These two linear function are taken without change
from data supplied by Bell, (see Appendix A). The derivative of the
variation of twist with radius is defined by the slope of the linear

function.

Pitch Change Axis:

Two other geometric quantities which require definition are
the perpendicular distance from the chord line to the pitch change
axis and the distance from the pitch change axis to the leading edge
of the blade section. The pitch change axis distance was assumed to

be zero over the span of the blade and the leading edge distance
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was assumed to be 25% of the chord and was taken to be negative.
These assumptions are made from the sample routines included in
the WOPWOP manual as no data was available to accurately define

these quantities.

Chord:

The chord of the blade section was defined as a function of
radius and varies linearly from 18.2 inches at the theoretical root to
14 inches at 25% of the radius. From this point to the blade tip the
chord was a constant 14 inches. This data was taken from 'XV-15

Blade Properties’ provided by Bell.

Maximum Thickness Ratio:

The maximum thickness ratio of the blade section,
thickness/chord, was defined by -calculating a linear function of
radius from the Bell airfoil data given for 14 radial stations in 'XV-
15 Blade Properties’. The maximum thickness ratio varied from
35% at the theoretical root to 8% at the tip. This linear curve fitted
the data with an r2 of .99.

Maximum Camber Ratio:

The maximum camber ratio of the blade section,
camber/chord, is defined by the airfoil section at each radial station.
The airfoil section is given by Bell in 'XV-15 Blade Properties' for
14 stations. Every section is a 64 series airfoil. The data states that
design coefficients, c], are assumed to vary linearly between

stations. The maximum camber ratio is defined as the camber ratio
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times the design lift coefficient divided by the ideal coefficient of
lift for a 64 series airfoil, (see reference 22). The design lift
coefficient was found by linear interpolation between values given

at the 14 radial stations.

3.2.2 Subroutine FUNE2Q

This subroutine defines the chordwise geometry of the rotor

blade in terms of radial and chordwise location.

Camber:

The camber is defined as the distance from chord line to
camber line divided by the maximum camber displacement and is
expressed as a fifth order polynomial fit to the data points found in
reference 22, p.385. The function is multiplied by a correction
factor for design lift coefficient based on the radial station location
of the blade element as described above for maximum camber

distance in FUNE2.

Thickness:

The thickness is defined as the distance from camber line to
upper or lower surface divided by the maximum thickness. This
distance is measured perpendicular to the chord line. The thickness
at a given chordwise and radial location is calculated by chordwise
and radial interpolation from defined data points. Data for 64 series
airfoils of various thicknesses is tabulated in reference 22, pp. 347 -
353 in terms of chordwise position. These tables were used to

create a two dimensional set of data points (radial and chordwise
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frame of reference) from which the thickness at a given point on
the blade can be extrapolated by linearly interpolating between
four data points surrounding the point of interest. Five radial
stations were selected to create the mesh with airfoils of 8%, 12%,
18%, 28%, and 35% thickness. The only significant approximation
was that data had to be created for 28% and 35% thick airfoils. This
was done by linearly scaling the thickness data of a 21% thick
airfoil. This approximation is reasonable as the data given by
reference 22 varies approximately linearly with thickness for 64
series airfoils. A more rigorous mathematical model of the rotor
blade should include more airfoil sections and actual data for the

thicker airfoils.

Chordwise Derivatives:

The derivative of the camber with respect to chord was
calculated by taking the derivative of the polynomial function. The
derivative of thickness with respect to chord was calculated using a
finite difference method over a 1% length of chord. The derivative
is calculated over a 0.5% length of chord at the leading and trailing
edges.

The results of the geometry definitions are shown in figure

3.1 and 3.2 for both the metal and ATB blades.
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XV-15 Advanced Technology Blade geometry.
Isometric, top, and planform, bottom.

Figure 3.1
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Figure 3.2 XV-15 Metal blade geometry. Isometric, top, and
planform, bottom.
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3.2.3 Subroutine FUNPSI

This subroutine describes the pressure distribution on the
blade surface as a function of radial, chordwise and azimuthal
position. This is the most complicated of the input routines and
requires several assumptions and qualitative descriptions of the
complicated three dimensional flow about a rotor blade in hover
and forward flight. The method of computing the pressure at a
point on the rotor blade was similar for hover and forward flight.
The point is defined by its radial, chordwise and azimuthal
positions. From these three coordinates, the angle of attack and
relative velocity is calculated for the blade element containing the
point. The pressure coefficient is then determined by the velocity
addition method of reference 22. This method is described below

and in appendix B.

Relative Velocity and Angle of Attack:
In hover, the angle of attack is equal to the sum of the
collective pitch, blade twist and inflow. The twist is known from

subroutine FUNE2. The inflow was assumed constant such that:

Th t
Vin = \/ s (3.5)

2+densityedisk area

The inflow angle is calculated as:

Vin
radial velocity

tan-1(

). (3.6)
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The collective was found by adjusting the collective angle
untii. WOPWOP calculated the thrust required to match the hover
value of CT given in reference 18. This procedure provided radially
varying angles of attack in agreement with hover data provided by
Bell.

The relative velocity of the blade element was simply the radial

distance from the hub times the rotor rate of rotation, V = Qer.

Pressure Distribution Calculation:

The pressure distribution about the airfoil was calculated
using the velocity addition method of reference 22 outlined in
appendix B. This method is based on adding velocity increment
ratios due to camber, thickness and angle of attack in order to find
the total velocity ratio at a point on an airfoil. The data for this
technique was tabulated for 64 series airfoils in reference 22 pp.
346-353. As with the thickness calculations, data had to be
estimated for 28% and 35% thick airfoils by scaling data from
thinner airfoils. The results of this scaling are approximate as the
velocity addition method may be inaccurate for thick airfoils.
However, pressure distributions calculated by this method appear
to be qualitatively correct and agree well with pressure
distributions calculated using a panel method?3 for thin airfoils at

low angles of attack.

Miscellaneous:
The above pressure distribution is corrected for

compressibility by the Prandlt Glaurt compressibility correction.

73



The time derivative of the pressure was calculated using a finite

difference method.

3.2.4 Fountain Model

Analysis of previous NASA flow visualization studies!4 and
particularly the results of chapter II have shown that the presence
of the wing under the hovering rotor causes profound flow
phenomena referred to loosely as the fountain effect. The wing
obstructs the downwash from the hovering rotor, causing the flow
to turn spanwise along the wing. Also, the wing acts as a partial
ground plane below the rotor which causes a decrease in the inflow
velocity as the blade passes over the wing. While the change in
inflow relevant to discrete noise is due to the partial ground plane,
this phenomenon will be referred to as the "fountain effect" as all
associated tilt rotor flow phenomena have been loosely associated
with the recirculating flow.

As the exact details of the fountain flow and its effect on the
rotor blade loading are not known, a mathematical model was
developed to simulate a deficit in the inflow velocity over the wing.
The parameters of the model are based on the chord of the wing.
The main effect of the inflow velocity deficit is to increase the angle
of attack of a blade element as it sweeps over the wing. This results
in a time varying blade loading which produces sound. A plot of
p(t) at the quarter chord point of three radial positions as a function
of azimuth is shown in figure 3.3.

The mathematical model defines the width of the affected

region to be 4/5 of the wing chord with an inflow velocity deficit of

74



‘Anowoo3 opejq (eI -osuodsar ope[q Apedis-isen) QLT = IS UO PIIdNUD
199JJ2 uUIRlUNO,{ ‘YInwIze Jo uonduny e st aInssaid pioyd 1duenb juswrsfd opelg €¢ amdrg

(s931393p) 1S4

0te 01¢ 06¢ 0LC 0S¢ 0¢?
1 T T “ T T T | p— T T T | pa— L c
..-. €0 = YHdremeee :
T 90 = 4- - - T 0005
F 60 = §—— :
e, 01 000'T
: 1,01 005'1
o\ | [oio—i
: X/ 1401 000
T ,01 00S°C

,01 000°€

(Z ui/N) 2Inssaag

75



20%. A sketch of the inflow velocity profile is shown in figure 3.4.
As the blade approaches the region over the wing, the inflow is
made to decrease as a quarter sine wave to 80% of the constant
inflow velocity calculated from momentum theory. The inflow
profile is made to be symmetric about the center point of the wing.
The forward sweep of the wing is not accounted for. Appendix C
contains the details of the mathematical model.

This model is very approximate but is currently substantiated
by visual experiment and scale model results. It simulates a flow
disturbance caused by the wing obstructing the downwash. Further
investigation into the recirculating fountain effect will provide more

accurate models in the future.

3.2.5 Namelist

The name list specifies the operating conditions of the main
rotor including the location of the microphone, forward speed, rotor
speed and blade motion coefficients. The inputs for the operating
conditions were obtained from the experimental cases of hover and
forward flight. The blade motion coefficients are defined by the
Fourier coefficients in the Namelist. In hover, a constant coning
angle of 2° was used. The blade lagging and feathering coefficients
were set to zero as aeroelastic effects were neglected.

The above three subroutines and name list represent a
mathematical model of the geometry and aerodynamics of the XV-
15 metal blade rotor. A similar set of routines was developed to
model the different geometry and loadings of the ATB blades. The

loading definitions differed in that no chordwise accurate loading
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Figure 3.4 Schematic of rotor inflow velocity profile showing
'sharp’ and 'smooth’ fountain models.

77



data was available for the advanced airfoil section A triangular
loading distribution was implemented. @ CAMRAD data for the VR7,
VR8, and VR43030 blade element coefficients of lift and drag were
used to determine the blade element loading. (This data and all
related ATB data was obtained from Ken Rutledge at Lockheed
Engineering and Sciences Company, Hampton, Virginia.) The
chordwise compact (triangular loading) assumption will be shown to
be a good assumption. The availability of more accurate CAMRAD
lift and drag data, tabulated as a function of angle of attack and
Mach number, allows for a more accurate spanwise loading

distribution.

3.3 mparison of Metal Bl lculations With Experimen

The model used here to compare to the XV-15 test include
chordwise accurate loading distributions based on the method of
Abbot and Von Doenhoff as described above. The sharp fountain
model was used as described in appendix C. The observer geometry
is shown in figure 3.5 for the following predictions. Operational and
rotor characteristics are given in appendix A. Figures 3.6 and 3.7
show comparisons for near in-plane observer locations in front and
behind the aircraft. The predicted spectra are corrected to account
for the experimental conditions which included two rotors and
ground plane microphones. The ground plane microphones
effectively double the acoustic pressure and the two rotors are
considered here to be uncorrelated sources which double the
acoustic energy. Thus the single rotor free field predictions are

increased by 9 dB for comparison.
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As seen in figures 3.6 and 3.7, the predictions are in good
agreement with with the experimental spectra. Considering the
rear acoustics shows that the fundamental harmonic of the
prediction is ~5 dB low, but harmonics 2-15 are well predicted. The
front acoustics are not as well predicted in level, but the trends are
captured which indicates that the predictions capture the
directionality of tilt rotor hover noise. Overall, these predictions
indicate that tilt rotor hover discrete noise can be predicted using
the fountain model with acceptable accuracy. A more extensive set
of comparisons is presented in section 3.6.2 based on more recent

XV-15 acoustic tests which use the ATB blades.

3.4 Scalloping Effects in Noise Predictions

The scalloping in the prediction, (see also figure 3.34), which
is not apparent in the experiment can be explained. The scalloping
in the prediction is due to the periodic nature of the blade/fountain
interaction and the mathematical definition of the fountain model.
This functional definition causes a pattern of increasing and
decreasing amplitudes of the Fourier components of the predicted
acoustic signal. Figure 3.12 demonstrates how different functional
definitions of the fountain cause different scalloping patterns. The
scalloping pattern is essentially related to the time and length scales
of the functional definition of the fountain model. These time and
length scales reflect a Doppler shifted composite time, the time it
takes for the blade elements to pass through the fountain, and some

characteristic width associated with the fountain. The time and
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length scales then determine a fountain "frequency” and harmonics
which results in frequency modulation or scalloping.

As seen in chapter II, the fountain flow is a time varying
phenomenon and is changing positionally and in shape and
magnitude. For the experimental spectra, many time traces are
considered, and their spectra are averaged. The scalloping is
obliterated due to averaging the spectra of time signals which vary
significantly depending on the fountain flow variations. This
variability is shown if figures 3.8a and 3.8b which show two
instantaneous spectra for the ATB blades taken over approximately
4 blade passages. One can see variations in the discrete noise of up
to 20 dB. Barely noticeable scalloping appears in these figures as
these spectra contain more than one blade passage which averages
out the effect. The over and under prediction of the higher
harmonics can be attributed to the scalloping in the predictions

which are averaged out of the experiment.

3.5 Aeroacoustic Experiments Using WOPWOP

Many modifications and refinements were made during the
development of the current model. This process of refinement
provided several insights into the effects of aerodynamic and blade
loading parameters on the noise spectrum of the XV-15 rotor.
Different parameters studied include the aeroacoustic effect of the
presence of the fountain, a study of the effects of the fountain
geometry on the acoustic signal, the effects of chordwise loading
distributions, and the effect of dynamic blade loadings duc to the

impulsive loading changes
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3.5.1 Fountain Effect on Loading Noise

Figure 3.9 shows a prediction, (waveform and spectrum),
without the fountain effect, ie. azimuthally constant loading. In this
figure, and wherever indicated, "Levels not corrected for
experiment" means that the figure shows a single rotor, free field
microphone calculation, and the results of the calculation cannot be
directly compared to experimentally obtained results. This
prediction demonstrates the relative importance of thickness and
loading noise for this near in-plane case behind the aircraft. With
the exception of the first harmonic, the monopole or thickness
source is the dominant source of sound radiation in-plane. The lift
dipole is perpendicular to the blade chord. The highly twisted
blades of the XV-15 tend to cause both mechanisms to radiate
sound outside of the simple radiation patterns usually associated
with a rotating acoustic dipole and monopole. The blade twist
provides a spanwise variation in orientation of the sources. Thus
the loading noise is only a few dB less than the thickness noise for
this near in-plane case, whereas one might expect the thickness
noise to be of much greater magnitude.

The inclusion of the fountain effect in the WOPWOP
calculations caused a significant increase in the predicted sound
levels. Figure 3.10 compares the acoustic wave form and spectra
for predictions made with and without the fountain effect. This
figure shows how the high noise levels associated with the fountain

flow noise mechanism make it the dominant sound source. Because

of the highly twisted blades, the fountain sound mechanism
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radiates sound in all observer directions including this near in-
plane case. The fountain mechanism stems from the azimuthally
varying inflow conditions. The changing inflow causes a change in
blade element angle of attack. This makes the blade loading
become a function of time in a blade fixed coordinate system.
Figure 3.11 shows a plot of the time derivative of blade surface
pressure for three spanwise stations. The acoustic pressure is

dF .
proportional to dt where F is the force on the fluid. Thus one can

write for a blade fixed coordinate system:

a.
a)

(3.7)

.U-
R
=]
-

: . dP . . o
where p' is the acoustic pressure and de s the time derivative of
. dP .
the blade surface pressure. Figure 3.11 shows that q¢ 1§ zero over

the rotor disk except in the fountain region. This physically

. . . . dP )
explains the fountain noise mechanism. dt also approximates the

acoustic waveform of the fountain mechanism at each radial station.
The acoustic signal in the observer fixed coordinate system will be a
time shifted sum of the acoustic signal generated by each radial
station. Comparing figure 3.11 with figure 3.10 which shows the
acoustic signal calculated by WOPWOP illustrates this point. One
should also note that fountain mechanism does not affect the
thickness noise for obvious reasons.

Two fountain models were developed: the 'sharp’ inflow

variation was characterized by a sharp decrease in inflow velocity
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over the wing and the 'smooth' inflow variation was characterized
by a gradual decrease in inflow velocity (see appendix C for details).
Predictions for a rearward observer location are compared in figure
3.12 for the two fountain models. The sharp fountain model has a
spikier acoustic wave form of slightly greater amplitude. As would
be expected, this results in higher spectral amplitudes for the
higher discrete harmonics. The overall sound pressure levels are

approximately equal for the two fountain models.

3.5.2 The Effects of Chordwise Loading Distributions

As user input, WOPWOP requires the pressure on the
blade surface as a function of azimuth, radial station and chordwise
position. The problem lends itself to a 2-D blade element
simplification The loading characteristics of each radial station are
calculated as if for a 2-D airfoil in a steady flow.

Modelling a chordwise accurate pressure distribution on the
rotor is complicated by the need for the loading distribution to be a
function of angle of attack, Mach number and the flow conditions
(attached or separated flow for example). For standard NACA
airfoils, the chordwise pressure distribution can be approximated
using the velocity addition method of Abbott and Von Doenhoff22.
This method is accurate for slender airfoils at small angles of attack
(fully attached flow) and low Mach numbers. '

However, this method was not applicable to the ATB blades as
they are not standard NACA airfoils. The development of the
dynamic lift model for the metal blades also precluded the use of

the velocity addition method. A simplifying assumption was to
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model the chordwise loading with a triangular loading distribution.
This simplification was based on the premise that the loading
distributions are approximately acoustically compact; the chordwise
loading distribution is unimportant for computing the noise signal
for the discrete frequencies of interest.

The conditions for compactness given by Farassat20 are that
the distance from the source to observer should be much greater
than the length scale of the source. Also, the time taken for the
collapsing sphere to cross the body should be much less than the
period of the sound fluctuation. This implies the following compact

limits:

Tobs >~ chord (3.8)

chord-c, 1
(1.- Miip) < frequency

(3.9)

For the case of the XV-15 in hover, Mijp = 0.65, the chord @ 90%
radius = 0.34 meters, and assume a speed of sound of 340 m/s.
This implies that the accuracy of the chordwise pressure
distribution is unimportant for frequencies less than 350 Hz.

The compactness assumption was tested by comparing the
WOPWOP calculations of three different chordwise distributions for
the XV-15 using the standard metal blades which employ NACA 64
series airfoils. The three distributions were constant chordwise
loading, a triangular loading distribution where the maximum

pressure occurred at the 1% chord point, and a chordwise accurate
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pressure distribution calculated using the velocity addition method
of Abbott and Von Doenhoff. The total lift on each blade element
was the same for the three loading distributions. A near in-plane
observer location to the rear of the aircraft (the same conditions as
the previous predictions) was chosen so as to maximize the Mach
number of the blade as it passed through the fountain moving
towards the observer. This maximizes the Doppler shift and
amplification. The results of these calculations are shown in figure
3.13. The spectra are very close out to about 800 Hz. The
triangular loading distribution is shown to be a valid and accurate
simplification. Also note that the OASPL differs by less than half a

dB for the triangular loading and chordwise accurate loading cases.

3.5.3 The Effects of Dynamic Airfoil Response

Dynamic lift effects on the rotor blade were modeled using
Leishman and Beddoes' semi-empirical dynamic stall model.24.25
This model is presented in a form which is consistent with an
indicial formulation. It accounts for the unsteady growth and decay
of lift in response to angle of attack changes. The onset of vortex
shedding is represented by a criterion for leading edge or shock
induced separation based on a critical leading edge pressure.
Induced vortex lift and its convection and decay are represented
empirically. Nonlinearities associated with trailing edge separation
are represented using a Kirchhoff flow model in which the
separation point is related to airfoil behavior.

This model is formulated in terms of a superposition of two

indicial aerodynamic responses to forcing. An indicial function
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defines the response to a disturbance which is applied
instantaneously at time zero and held constant thereafter, ie a step
function change in angle of attack. These responses consist of an
initial noncirculatory or impulsive loading, based on piston theory
which decays rapidly with time, and a circulatory loading which
builds with time to the steady state value. These response
functions are shown in figure 3.14 for a NACA 0012 airfoil
subjected to a 2° step change in angle of attack. CN is the normal
force coefficient of the airfoil

Duhamel's principle26 is used to derive the net response
based on these two indicial response components to step functions
for any arbitrary forcing function. In this case, the forcing function
is the time history of the blade element angle of attack. The
response of a linear system, (indicial response functions may then
be summed), to an arbitrary forcing function can be regarded
mathematically as a summation of successive step functions. The
response of an airfoil is then a summation of the airfoil responses to
the individual step changes in angle of attack. Let Aa(T) be the
magnitude of each step change in angle of attack over a time
interval AT. Let A(t-t) be the indicial response at time t resulting
from the unit step change in angle of attack initiated at time T. Thus

A(t-T) corresponds to the sum of the impulsive and circulatory

indicial response functions described above. The airfoil response to

a single step change in angle of attack can be expressed as:

Aa(t)
At

AT A(t-1). (3.10)
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The response of a linear system to all the step functions initiated

from T=0toT =tis:

=t
Aa(t)
Cn(t) = a(0)A(Y) + 2 At A(t-t) AT. (3.11)
T=AT

Taking the limit as AT goes to zero gives the superposition integral

or Duhamel's integral:

t
CN(D) = a(0)A(L) + Ja‘(t) A(t-t) dr. (3.12)
0

The attached flow airfoil response can then be found by numerically
solving equation 3.12 with the given indicial response functions.
The algorithm for doing this is given in references 24 and 25 and is
used here. One should note that these indicial response functions
are semi-empirical.

The superposition integral is only valid for attached flow. The
dynamic stall model of Leishman and Beddoes incorporates semi-

empirical schemes for correcting the airfoil response due to trailing

edge separation, stall, and reattachment. Two important
dimensionless parameters are S, the dimensionless distance
travelled by the airfoil, and k, the reduced frequency of the airfoil.

They are defined as follows:
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wc
k:2V (3.14)

where ¢ is the blade chord, V is the airfoil velocity and ® is the

frequency of the forcing function.

To demonstrate the importance of dynamic stall as a sound
mechanism, a stationary airfoil with a time varying loading was
studied using the dynamic stall model of Leishman and Beddoes'.
Figure 3.15 shows the dynamic lift and stall hysteresis for a NACA
0012 airfoil subjected to a sinusoidal change in angle of attack. This
figure shows the dynamic lift, delayed separation and stall, and the
reattachment process. Figure 3.16 shows this cyclic process as a
function of time. The acoustic waveform can be found from the

dF(1)
dt

loading time history using the relation, p'(t) = . CnN is the

normal force coefficient, so the acoustic waveform will look similar

dCn(t)
to dt -

This derivative is calculated numerically and plotted in

figure 3.17. This waveform clearly shows that the acoustic signal
generated by a blade undergoing dynamic stall will radiate sound
over a significant part of the frequency spectrum. Figure 3.18
shows a comparison between the dynamic stall loading and the

steady response loading. The steady response signal is generated

by assuming a linear response to changes of angle of attack, ie CN o<

o.. Figure 3.19 shows a comparison between the waveform

generated by an airfoil using dynamic response and steady
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response to a sinusoidal varying angle of attack. The steady
response will radiate sound only at the frequency of the forcing.
This analysis indicates that the dynamic stall of an airfoil would be
an important source of noise radiation across the frequency
spectrum.

The above analysis is for a non-moving airfoil, (stationary
source), with a sinusoidally varying angle of attack. An
investigation of possible interest would be to study the effect of
dynamic stall on a rotating rotor blade, (moving source). This could
be accomplished by using this dynamic stall model with a rotor
blade defined by constant spanwise properties and using WOPWOP
to calculate the acoustic signature as the rotating blade undergoes
stall and reattachment. Dynamic stall effects would be an important
sound producing mechanism as the stall/reattachment hysteresis
may result in significant time varying blade loadings. This
mechanism would be an important source of sound for a rotor in
forward flight as the retreating blade operates at high angles of
attack.

The tilt rotor blades were carefully designed for hover and
only inboard spanwise sections operate at high angles of attack.
The change in angle of attack due to the fountain is not enough to
cause stall over any section of the blade. However, the fountain
flow causes an impulsive type loading which has dynamic
characteristics. These include blade element over and undershoot
responses to changes in angle of attack as well as a definite

hysteresis as the blade makes a complete revolution. These effects
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were modeled using the dynamic stall model of Leishman and
Beddoes discussed above.

This method was developed and tuned primarily for the NACA
0012 airfoil. In order to apply this method to the NACA 64-series
airfoil on the tilt rotor blades, we used the compressibility
corrections for Crmax and Crq and the time constants from the
available NACA 0012 information24. Also, chordwise accurate
loading distributions were not used. As seen in section 3.5.2, the
triangular loading distribution simplification should not significantly
affect the calculations. Thus the absolute accuracy of the lift
predictions will not be expected to be high but they should be
sufficient for these initial acoustic predictions.

The result of this indicial formulation is that the airfoil tends
to overshoot the steady state lift value due to a change in angle of
attack. This is caused by the impulsive indicial response function.
Acoustically, the impulsive indicial response is more significant than
the circulatory indicial response as it leads to more rapid changes in
blade loadings. This effect can be seen in figure 3.20 which shows
the lift response of an airfoil passing through a sharp fountain
inflow velocity variation. Note the overshoots and decays due to
the indicial response of the airfoil. The dimensionless distance, S,
through the constant inflow part of the fountain zone is not long
enough to build a significant circulatory response.

The physical mechanism by which the dynamic loading
response generates sound is illustrated in figure 3.21 and figure

3.22. Figure 3.21 shows quarter chord pressure as a function of

azimuth. The indicial response over and under-shoots are apparent
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at the entrance and exit of the fountain region. Within the fountain,
the lift never assumes the steady state value, showing the
dominance of the indicial response. The circulatory response is
observed to accumulate after the blade section exits the fountain
and the blade approaches the steady state lift. The acoustic

dP
waveform can be generated by examining dv shown in figure 3.22.
dP
Figure 3.23 shows a comparison to the dt for the steady response

for a blade element at 90% chord. Clearly the over and undershoots
result in an acoustic waveform of higher amplitude and slightly
different shape.

Figure 3.24 shows WOPWOP noise predictions using the
dynamic and quasi-steady lift responses for the rearward, near in-
plane acoustics of the XV-15. The velocity addition model is termed
quasi-steady as it assumes a steady state lift value for a given angle
of attack and the angle of attack_ time history has no affect on the
lift. As expected, the WOPWOP calculations show that the acoustic
signal generated by the dynamic response model has a higher
amplitude due to the indicial over and undershoots. The lack of
smoothness in the acoustic signal is due to the coarse spanwise
discretization, 25 spanwise segments, which is used to minimize CPU
time. Figure 3.25 illustrates the effect of using 10 and 40 spanwise
discretizations on the WOPWOP calculations.

Figure 3.26 shows a comparison between the dynamic lift and
quasi-steady models using the smooth fountain model of appendix
C. Again, the indicial response causes lift overshoots which result in

acoustic waveforms of higher amplitude and similar shape. In the
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rear aircraft acoustics. Levels not corrected for
comparison to experiment.
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frequency domain, the dynamic lift model results in OASPL levels
approximately 3 dB higher and with higher levels of high frequency
content.

The implications of this study are that rotor noise predictions
based on azimuthally varying rotor loads should include dynamic
lift effects. Neglecting dynamic lift effects may result in under
predicting the amplitude of the acoustic signal, and the higher
harmonic amplitudes. This result may explain the under prediction
of the fundamental harmonic in the comparisons to experiment
shown in figures 3.6 and 3.7. The amplitude of the fundamental
frequency is generally determined by the amplitude of the acoustic

signal.

3.6 WOPWOP Noise Predictions for the XV-15 ATB Blades
WOPWOP input code was -also developed to model the
geometry and loading on the ATB blades described previously.
These blades made use of composite materials and had different
geometries and airfoil sections than the metal blades.
Geometrically, the ATB blades are characterized mainly by a
tapering of the chord towards the tip. A quasi-steady loading
model was used with a triangular loading distribution. The sharp
fountain model was used to describe the spatially varying inflow

velocity.

3.6.1 Comparison of ATB_and Metal Blade Acoustics

Figures 3.1 and 3.2 illustrate the geometries for the two

blades. The different geometry and different loading characteristics
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due to the advanced airfoil sections result in noticeably different
acoustics than the metal blades. Figure 3.27 compares the thickness
noise for the rearward, near in-plane acoustics for the two blades.
The operational parameters are the same here as for the predictions
presented in section 3.3. Figure 3.28 compares the loading noise for
the two blades and figure 3.29 shows the overall noise at this
observer location. These calculations are based on a single rotor
calculation. The differences in acoustic signal are noticeable but not
extreme. The ATB blades exhibit a 2 dB decrease in OASPL. This
may be due in part to the 5% less thrust generated by the ATB
blade as calculated by WOPWOP. However, this comparison does
show the feasibility of modifying a rotors acoustics through

selective changes in geometry and airfoil section.

3.6.2 i f ATB Predicti Experimen

The main purpose of generating input code for the ATB blades
was to see if the fountain model previously defined could be used to
predict both polar and azimuthal directionality and amplitude for
the far field acoustics of a hovering tilt rotor. This was
accomplished by comparing WOPWOP noise predictions based on
the fountain model to an extensive set of aeroacoustic tests*. The
WOPWOP comparisons made here differed from previous
calculations in that the acoustic signals from the two rotors were
coupled. This was done by implementing a scheme in which two
WOPWOP runs were performed for each observer location. The two
runs represented mirror images of observer locations about the

longitudinal plane of symmetry. The pressure signals of each run
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were then summed to give the far field prediction. This method
accounts for the interference pattern generated by two correlated
acoustic sources. The summed pressures were then doubled to
account for the ground plane microphones used in the experiment.

Some of the results of these predictions are shown in figures
3.30-3.33. Figure 3.30 compares the polar directivity for the
forward acoustics and figure 3.31 compares the polar directivity for
the rearward acoustics. Figure 3.32 compares the azimuthal
directivity for an observer 45.7 degrees below the rotor plane.
Figure 3.33 shows a comparison of the acoustic signal for the rear
acoustics 45 degrees below the rotor plane.

An in-depth analysis of these hover acoustic tests and
WOPWOP noise predictions is presented in reference 4. The
conclusions of these comparisons are summarized here for
completeness.

The noise mechanisms and associated directivity patterns
illustrated in figures 3.30-3.33 indicate that the acoustic spikes
apparent in both experimental and predicted time domain results
are generated by the fountain effect. Doppler amplification, the
I_l—-—;ﬁ in the far field terms of equation 3.4, causes the noise to be
radiated preferentially to the rear of the aircraft. This is because
the blades are moving towards the rear of the aircraft as they pass
through the fountain region and are subjected to unsteady loadings.
The amplitude of the acoustic signal is also greater for radiation
directions out of the rotor plane as the lift dipoles radiate

preferentially perpendicular to the airfoil surface which is
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approximately parallel to the rotor plane. The general agreement in
directivity variations and signal amplitudes support the conclusion
that the fountain effect is the dominant noise mechanism for tilt
rotor hover acoustics.

Differences between the predictions and experiment can also
be explained. In the predictions, the positive pressure peak
corresponds to a blade entering the fountain region and the
negative pressure peak corresponds to the blade exiting the
fountain region. In general, the predictions capture the character of
the positive pressure peak as illustrated in fig 3.33. However, the
negative pressure peak is generally over predicted. This implies
that the physical fountain region on the XV-15 has a strongly
defined entrance region which is predicted well by the fountain
model. However, the irregularity of the negative pressure peak
indicates that the exit region is not physically well defined and
varies with time. Another consideration is that the randomly time
varying exit region causes the two rotors to behave as uncorrelated
acoustic sources which results in a smearing of the negative
pressure peak. This random phenomenon was expected. In fact the
time variations in the acoustic signal correlate qualitatively well
with the time variations measured in the inflow field for the 1/12
scale model tilt rotor. Thus an important aspect of tilt rotor hover
acoustics, the randomly time varying character of the acoustic
signal, cannot be predicted with a deterministic mathematical model
like the fountain model. One possible approach to solving this
problem is to correlate acoustic and hotwire measurements over

both rotors on a model tilt rotor. This would enable the
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development of a fountain model based on correlation results
instead of assuming a correlation of 1 or 0 between the acoustic
sources.

This effect shows up more clearly in a comparison of
measured and predicted spectra. Figure 3.34 shows a comparison of
spectra for an observer location behind the aircraft and 45.7
degrees below the rotor plane. The predicted spectra are based on
a non-variable single blade passage calculation and show the
harmonic scalloping discussed in section 3.4. The experiment does
not exhibit this characteristic as the experimental spectrum contains
50 averages of spectra calculated from 1 second time intervals each

of which contains approximately 30 blade passages.
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Chapter IV
Broadband Noise Predictions Using Modified Amiet Method

Previously, no methods were available for predicting rotor
broadband noise with azimuthally varying inflow turbulence. This
chapter describes a method for adapting the method of
Amiet27.28.2% 0 account for azimuthally and radially varying
turbulence and presents broadband noise predictions for a hovering

tilt rotor based on this scheme.

4.1 Broadband Acoustic Formulation

As was alluded to in Chapter II, broadband noise cannot be
calculated explicitly from the Ffowcs Williams Hawkings Equation.
This is because the loading fluctuations are due to turbulent
fluctuations in the inflow field and are therefore non-deterministic.
The most widely used approach is to solve for the acoustic far field
noise spectrum. This can be done by solving in the frequency
domain rather than the time domain. Reference 30 contains a more
extensive treatment of general broadband rotor noise concepts.

The radiative terms of loading noise can be extracted from

equation 3.4:

1A A

o L L_] 1 [lr Mif; ]
4mp; '(x,t) = Co J [r(l-Mr)z dS(m) + co r(l-Mr)3 dS(n)

(4.1)
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If one assumes that the surface force distribution can be replaced
by a point source, then in an analogous way to equation 4.1 the far

field sound due to a moving point force can be written as31;

' A oF; F; dM
471tpy (5,t)=[co rz(ll_Mr)z (af * 1-101, atf) ] (4.2)

The acoustic pressure can be written in spectral form as the

generalized Fourier transform of the time domain solution:

o0

pL'(x.D = JPL'(EJ) e-2mift d¢ (4.3)

-00

How this integral is to be evaluated for a rotor whose fluctuating
loads are caused by inflow turbulence has been the subject of

several previous studies.27,28,29,30,32,33

4.2 Comparison of 3 Broadband Rotor Noise Prediction Schemes

Amiet's method is of primary relevance here as his algorithm
can be easily modified to account for azimuthally varying inflow
properties. A brief description and comparison of other existing

methods is provided for historical context and completeness.

4.2.1 Method of Homicz and George3?
This method treats the general case of unsteady forces

distributed in space following the Lighthill Equation34. Each blade is
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represented by a point acoustic dipole at some radius, R,. The
analysis is carried out in observer fixed coordinates which
rigorously accounts for blade to blade correlations. This approach
can be viewed as calculating the sound field generated by unsteady
forces distributed in space. The acoustic dipoles related to these
unsteady force switch on and off as the blade rotates over the

dipole location in space.

4.2.2 Method of George and Kim33

This method approximates the distributed unsteady blade
forces as moving point forces. The calculation method takes
advantage of the high frequency characteristics of the load
fluctuations to reduce computational complexity. The smooth high
frequency part of the spectrum is primarily generated by
uncorrelated blade loadings which allows direct summation of the
acoustic intensities of each blade. This method also accounts for
Doppler shifts in the radiation frequency due to the moving point

force.

4.2.3 Method of Amiet27-28.29
This method takes a different approach by approximating the

circular motion of the rotor blade as a series of rectilinear motions.
The noise spectrum can be obtained by summing and averaging the
noise spectrum of a number of individual linear blade motions over
one revolution. This method has the advantages of accounting for a
full range of wavelength-to-chord ratios and has accurate

directivity predictions. This method can also be applied to noise
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calculations for a rotor in forward flight and can account for
turbulence contraction effects. Most importantly in the present
study, this method is easily adapted to account for azimuthally

varying inflow turbulence.

4.2.4 Comparison of Broadband Noise Prediction Schemes

As the above three broadband noise prediction schemes use
different assumptions and computational schemes, a set of
operating conditions was selected to compare the results of the
three methods. The operational parameters of the Johnson and Katz
experiment35 was used as predictions for this case have previously
been published for the three methods. Previously, Amiet compared
the results of his method to the method of Homicz and George. This
comparison showed good agreement. However, the method of
Amiet assumed a Von Karman spectrum of turbulence while the
method of Homicz and George assumed a Dryden spectrum of
turbulence. Figure 4.1 shows calculations for the three methods all
of which use the Von Karman turbulence spectrum in the
calculation. The methods of George and Kim and Amiet, both of
which use 20 spanwise segments, show good agreement, especially
at high frequencies. where the assumptions made in both of these
schemes are valid. The predictions based on the method of Homicz
and George, which approximates the blade as a single element at
80% radius, are consistently higher than the other two methods by
approximately 15 dB.

Figure 4.2 shows a similar calculation using the Dryden

turbulence spectrum. In this figure, the method of Kim and George
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is compared to the method of Homicz and George. Amiet's method
1s not compared as the code could not be easily modified to use the
Dryden spectrum. Two predictions are shown for the method of
George and Kim; the solid line curve approximates the rotor blade as
a single element at 80% radius and the hashed line approximates
the rotor blade using 20 radial segments. As noted previously, the
method of Homicz and George approximates the rotor blades as a
single element at 80% radius. Figures 4.1 and 4.2 indicate that
approximating the rotor blade as a single element at 80% radius
leads to overpredictions of the sound pressure levels. Figure 4.2
also indicates that the method of Homicz and George does not agree
well with the method of George and Kim. The two single element
calculations disagree by ~7 dB at all frequencies. Comparisons of
this nature have not been made previously as the method of Homicz
and George had been previously computationally impractical for
high frequencies and the method of George and Kim is not accurate
at low frequencies. The method of Homicz and George should be
reformulated in terms of multiple spanwise segments in order to be
compared further with the other two formulations. The good
agreement between the method of George and Kim and the method
Amiet indicates that both are accurate formulations and are coded

correctly.

4.3 ified Meth f Ami

The basic method of Amiet calculates the noise produced by
an airfoil as it moves rectilinearly through turbulence. The actual

circular blade motion of a rotor blade is then approximated by a
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series of straight line segments. The analysis can also include rapid
distortion theory (the effect of distortion on turbulence as it moves
onto the rotor), and some blade-to-blade correlation due to multiple
eddy chopping. In this study, the method of Amiet was modified to
account for azimuthal variations of the turbulence characteristics as
the blade rotates through the fountain reingestion zone. These
modifications are described in Appendix D. The azimuthally
varying turbulence was defined in such a way as to approximate
the measured spatial variations in rms inflow velocity shown in
figure 2.22.

The calculations require the blade planform geometry and
motion, mean inflow velocity, and local values of the inflow rms
turbulent velocity and integral scale. The turbulence properties
were scaled from the 1/12 scale model experiments. The principles
behind the scaling method are described in Appendix E. For the
calculations, the reingestion zone rms velocity is 4.71 m/s, the
convection velocity is 22.36 m/s, and the integral scale is 0.356 m.
Over the rest of the disk, the rms velocity is 1 m/s, the convection
velocity is 22.36 m/s and the integral scale is 90% of the hover
altitude.

The method of Amiet is set up for calculations using the Von
Karman turbulence spectrum. This assumption was evaluated by
comparing the Von Karman longitudinal spectrum with the
measured longitudinal spectrum for the 1/12 scale model tilt rotor.
The comparison is shown in figure 4.3 and the principles behind
reducing the experimental data and generating the longitudinal

spectrum from the energy spectrum are given in Appendix F.
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Figure 4.3 shows reasonable agreement for wave numbers less than
3000 m-l. At higher wave numbers the experimental data shows
significantly less energy than the Von Karman spectrum used in the
predictions. This should result in overpredictions of the sound
pressure levels at higher frequencies. The apparent inconsistency
between the Von Karman spectra and the experimental longitudinal
spectrum is that while the Von Karman spectrum falls off as k373,
the experimental longitudinal spectrum falls off much more rapidly
at high wave numbers. This is probably due to the viscous effects

at the smaller scales of the model test.

4.4 Comparison of Modified Method of Amiet to Experiment

The modified method of Amiet was used to predict the sound
pressure levels for three azimuthal observer locations at each of
four polar observer angles. For the polar angles of 7.2°, 12.7°, 23.1°,
and 45.7° the front, rear, and side acoustics were calculated. The
rear acoustic predictions are compared to the NASA full scale, tilt
rotor hover experiments in figures 4.4a-d. Figures 4.5-4.8 show the
predictions and experimental results for the front, rear, and side
acoustics at each of the four hover heights. The .p designation
indicates the plot shows the predicted sound spectrum and the .e
indicates that the plot shows the experimental sound spectrum.

The predictions are quite promising as they indicate that the
sound polar and azimuthal directionality trends are captured. The
predicted sound levels are reasonable and are generally within a
few dB of the experiment with the exception of the high frequency

range of the 23.1° polar angle. With one exception, the predictions
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also accurately predict the difference in dB levels for the three
azimuthal observer locations. For the polar angle of 45.7°, the
azimuthal dB difference is significantly greater at high frequency in
the experiment than in the prediction.

Surprisingly, the accuracy of the predictions seems to
decrease as the polar observer angle moves out of the rotor plane.
The noise prediction method is based on a fluctuating lift dipole
which radiates preferentially perpendicular to the rotor plane. The
method also does not account for blade twist. Thus the assumptions
of the prediction method tend to break down for polar angles less
than 15°. Thus one would expect better accuracy for the out of
plane cases.

This inconsistency may be explained by the fact that the
modifications made to Amiet's method to account for azimuthally
varying turbulence has not been-'tuned’ to this experimental set of
data. Better predictions could be obtained by decreasing the size of
the reingestion zone as defined in the code. However, the
modifications to Amiet's method used in the calculations were made
independent of the calculations and therefore represent a best
guess based on the available data. More extensive experimental
testing would lead to better models and more accurate definitions of
the flow characteristics required to make accurate modifications to
Amiet's code.

These predictions do indicate that the broadband noise levels
can be reasonably well predicted using the method of Amiet with
modifications to account for high turbulence levels in the

reingestion zone. Figure 4.8.p shows the predicted sound spectrum
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using Amiet's method without modifications. This prediction is
shown by the solid dots labelled "Atmos. Turbulence". This
calculation shows that the unmodified method significantly
underpredicts the broadband noise levels by 10 - 20 dB depending
on frequency. Thus one can conclude that the high broadband noise
levels for a hovering tilt rotor are indeed due to the high levels of
inflow turbulence caused by the recirculating flow in the

reingestion zone.
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Chapter V.

Conclusions
This study has examined a broad range of issues which affect
tilt rotor hover aeroacoustics. The main results of this study are

described in the following sections.

5.1 Summary of 1/12 Scale Model Experiments

1. The recirculating fountain has been studied and recorded in
photos and videos. This flow phenomenon is identified by
opposing spanwise flows which meet at an unsteady separation
point on the fuselage. The flow erupts over the rotor plane and
is reingested.

2. Side views of the model indicate that an unsteady recirculating
flow exists along and above the length of the fuselage. This
aspect of the flow was previously unidentified and its

characteristics warrant future study.
3. The fountain flow is an multi-directional phenomenon and
efforts to study or model the flow in two dimensions will not

capture all the important aspects of the flow.

4. The recirculating fountain is strongly time dependent as it tends

to randomly shift about the aircraft's longitudinal axis. This
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causes intermittency effects which cannot be studied by

replacing one side of the model with an image plane.

. The unsteadiness and intermittency of the fountain flow were
observed with velocity time traces obtained using hotwire
anemometry. The time traces also indicated much more

turbulent flow over the rear of the aircraft than over the nose.

. Turbulence spectra indicate that inflow turbulence in the re-
ingestion zone over the rotor contains 5 - 10 time as much

energy per unit frequency over a broad range of frequencies
than is in the basic inflow turbulence of a single rotor with no

fuselage or wing.

. Contour plots of mean and rms velocities were generated at a
height of one inch above the rotor plane. These contours indicate
a velocity deficit in the axial component of the inflow velocity in
the region over the wing. This deficit is due to the partial ground
plane caused by the wing. The contour plot of rms velocity
shows high values over part of the rotor. These high values are
due to the highly turbulent flow being reingested. Both the
inflow velocity deficit region and the reingestion region are

clearly observed on the contour plots.

. The results of this study are of a semi-quantitative nature. The
Reynold's numbers are lower than for the XV-15 aircraft and the

rotor blade geometries are not scaled precisely. Some moderate
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assumptions were needed to reduce the hot wire velocity
measurements. Future studies are planned under more rigorous
conditions in order to study the details of the flow, further

quantify it, and look for methods of altering the flow.

5.2 Summary of WOPWOP Discrete Noise Predictions

1. The fountain effect, which is due to the partial ground plane
caused by the wing, is the dominant source of discrete frequency
noise for a hovering tilt rotor. Mathematical modelling of this
phenomenon has resulted in satisfactory noise predictions using
WOPWOP. The calculations are accurate in predicting both
approximate magnitudes and shape of the acoustic signal as well

as capturing the directionality trends of the noise radiation.

2. The experimental results indicate that the fountain effect varies
randomly in time and space. Acoustic time traces indicate that
the entrance to the fountain region is well defined while the exit
is not. Thus the mathematically deterministic model used in the
predictions can only represent a characteristic instance of the
fountain effect. This leads to scalloping in the predicted spectra
and overpredictions of the negative peak pressures in the time

domain.

3. Approximate chordwise loading distributions are shown to be

acceptable for discrete frequency calculations. A triangular
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loading distribution has been shown to give similar acoustic

results as a chordwise accurate distribution.

4. Dynamic airfoil response should be included in the prediction
scheme when the aeroacoustic mechanisms include impulsive

blade loadings, such as from the fountain effect.

5. Comparisons between calculations using the ATB and metal blade
rotor geometries indicate that the acoustic signal can be modified

by changing the rotor geometry.

5.3 mar f Br n ise Prediction

1. Modifications to Amiet's method have resulted in a means of
predicting broadband rotor neise with azimuthally varying
inflow turbulence characteristics. The azimuthally varying
turbulence characteristics were extrapolated from 1/12 scale

model experimental results.

2. Noise predictions based on this modified Amiet's method
compare well with experimental results. The broadband noise
levels are accurate to within a few dB and the directionality of
the sound radiation is also predicted. Better predictions may be
obtained through more accurate knowledge of the azimuthally

varying turbulence characteristics.
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3. The good correlation between the predictions and experiment
indicate that the highly turbulent, reingested inflow is the

dominant broadband noise mechanism for a hovering tilt rotor.

5.4 Final Remarks

While this study represents a first attempt to address many
issues, its results are conclusive. The fundamentals of tilt rotor
hover flow phenomena and noise mechanisms are now well
understood. The primary issue is the interaction between the rotor,
wing and rotor wake. Steps can now be taken to lessen the negative
effects of this interaction. Doing so should result in quieter designs

and improved hover configurations.
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Appendix A

Rotor Propeties and Operating Conditions for Metal Blade

Calculations
Rotor and Blade Properties
Station  Radial Station Thickness Twist
Number /R ft Chord (ft) Ratio t/c degrees Airfoil Section
1 0.00 0.00 1.5167 0.35 0.00 NACA 64-935
2 0.17 2.15 1.2771 0.28 -10.392 NACA 64-528
3 0.19 2.33 1.2567 0.27 -11.278 *
4 0.25 3.13 1.1667 0.26 -15.104 *
5 0.40 5.00 1.1667 0.21 -24.167 *
6 045 5.63 1.1667 0.20 -26.337 *
7 0.50 6.25 1.1667 0.19 -29.130 *
8 0.53 6.63 1.1667 0.18 -29.922 NACA 64-118
9 0.60 7.50 1.1667 0.17 31771 >
10 0.70 8.75 1.1667 0.14 -34413 *
11 0.81 10.13 1.1667 0.12 -37.318 NACA 64-(1.5)12
12 0.91 11.31 1.1667 0.10 -39.827 *
13 0.95 11.88 1.1667 0.09 -41.016 .
14 1.00 12.50 1.1667 0.08 -42.337 NACA 64-208

* Properties vary linearly between stated values

Rotor
Number of blades perrotor 3
Diameter 25.0 ft
Disc area per rotor 491 sq. ft
Solidity 0.089
Hub precone angle 2.5 degrees
delta 3 -15.0 degrees
Blade Lock number 3.83
Blade cut out radius 1.06 ft
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Computational Operating Conditions

Speed of sound 343.0 m/s
Ambient density of air 1.21 kg/m3
Velocity 0.0 m/s
Angle of descent 0 degrees
Observer distance torotor ~ 60.8 m
Elevation angle 10.81 degrees
Coefficient of thrust 0.0091

Rotor RPM 565

Nacelle angle 90 degrees
Aircraft gross weight 13000 1b
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Appendix B

Explanation of Coefficient of Pressure Calculation

This calculation is based on the velocity addtion method of

Abbott and Von Doenhoff presented in Theory of Wing Sections.2?
The theory of thin wing sections shows that the loading component
of the pressure distribution of a thin airfoil section may be
considered to consist of a basic distribution at the ideal angle of
attack due to camber, a distribution proportional to the angle of
attack as measured from the ideal angle of attack, and an additional
distribution associated with the basic thickness form (symmetrical
section) at zero angle of attack (pp. 75-76)

The load at a chordwise position is caused by a pressure
difference between the upper and lower surfaces. It is assumed
that the velocity increment on one surface is equal to the velocity
decrement on the other surface. Using the method of velocity
addition, the coefficient of pressure, S = 1-Cp, can be calculated by

. o : Av
adding the velocity increment corresponding to camber, v and the

. . Av
velocity increment corresponding to angle of attack, —V—a, to the

. . . . v
velocity increment due to the basic thickness form, v

=\vt VvtV (B.1)

. . X
Values of the ratios corresponding to one value of o are added

together and the resulting value of the pressure coefficient S is
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. . . X
assigned to the surface of the wing section at the same value of o

v \
The values of —\-,—a and Vo are added on the upper surface and

subtracted on the lower surface. In this way a pressure distribution
about an airfoil can be calculated where Cp = 1-S.
A correction must be made as the pressure distribution is

being calculated for an arbitrary cj, not cj;. For this reason, the ratio

Av
—V—i must be corrected by multiplying by a factor, f(a). As a first

approximation:
Cl - Clj
flay=—g— (B.2)
o

— +gﬂ( _a.) (B3)
Cl = Cli da o i .
flay =<8 22 (B.4)

© " da Clo )

and cjy is taken to be unity.

The ratio AVV must also be corrected as the value of the design
ci will be higher than c]j of the camber line by an amount
dependent on the thickness ratio of the basic thickness form. This

Av
discrepancy is caused by applying the values of Eva obtained for the

. . .. . vV .
mean line to the sections of finite thickness where y is greater than

Av
unity over most of the surface. So v 1s multiplied by the design lift

coefficient divided by the design lift coefficient of the mean line.
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This method is known to be very accurate for thin airfoils with thin
boundary layers and low drag coefficients. However, the data
estimated for the 28% and 35% airfoils may be significantly in error.

The velocity addition method was applied to the input
subroutine as no empirical data for the XV-15 rotor was available
and any type of panel method would be computationally inefficient.
The velocity addition method allows the fast and accurate
calculation of the the pressure coefficients on the upper and lower
surfaces at discrete chordwise locations at angles of attack when
separation is not a problem.

Data for the 64 series thickness forms are tabulated in
Appendix 1 and 2 of reference 22. These tables were entered as
data statements in FORTRAN subroutines. Data had to estimated for

the 28% and 35% airfoils from a 21% airfoil. % was found by using

equation. 6.5 of reference 22.

Y . (¥ 12

(VJtz = [(V) - 1]H+ 1 (B.5)
Avy

v was approximated by scaling the first 5% of the chord

exponentially from several thinner airfoils and then using the same
values as are given for the 21% airfoil. These values were used as it
was noted qualitatively that these values changed little as thickness
increased. As noted previously the velocity addition method is

imprecise for thicker airfoils, the pressure distributions about these

airfoils can be considered as approximate.
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This tabulated data represents a two dimensional array of
velocity ratios from which the desired values at a specific point on
the rotor blade can be calculated by linearly interpolating from four
surrounding defined data points. In this way a call to the FORTRAN
subroutine identifies the four data points and then interpolates to

produce the velocity ratios at the desired point.
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Appendix C

Partial Ground Plane/Fountain Effect

Substantial loading noise is produced on the tilt rotor blades
due to the partial ground plane caused by the wing below the rotor.
The spatially varying velocity distribution was previously estimated
based on smoke flow video tapes, and is substantiated by the
hotwire results of chapter II. This analysis was used in the creation
of a mathematical "fountain” model. This model defines the width
of the the affected region to be approximately equal to 1/3 to 1/2
the wing chord. The partial ground effect is estimated to cause a
20% reduction in the inflow velocity over the affected region. The
inflow velocity distribution was made to be symmetric about the
rotor/rotor axis.

The following describes the mathematical model developed
for determing the inflow velocity seen by a blade element as it
passes through the fountain:

The distance from the rotor/rotor axis to the edge of the
fountain is defined as:

RK1 RK2
CHALF:To wing chord + 5 wing chord (C.1)

and the width of the half sinusoid in the entry of the fountain is

defined as:

WHALF = RK2 ¢ wing chord. (C.2)
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RK1 and RK2 are two defined constants. For the case of the sharp
fountain, RK1 = 0.5 and RK2 = 0.1, and thus CHALF = 0.3-wing chord
and WHALF = 0.1-wing chord. For the smooth fountain, RK1 = 0.5
and RK2 = 0.5, and thus CHALF = 0.5°wing chord and WHALF =
0.5ewing chord.

For a given blade element at a radial distance, r, from the hub,
the inflow velocity is defined by four azimuthal angles. ¥ is the
angle swept out as the blade element rotates from ¥ = 0 to where
the leading edge intersects the boundary of the fountain defined by
CHALF. ¥, is the angle swept out as the blade element rotates from
¥ = 0 to where the leading edge intersects the end of the fountain
entrance region defined by CHALF - WHALF. W¥3, and ¥4 are the

mirror image of ¥, and W1 over the rotor/rotor axis. In summary:

¥ = COS'I( . ) : (C.3)
CHALF - WHALF
¥y = COS'I( . ) (C.4)
HALF - CHALF
Y3 = COS'I(W . ) (C.5)
-CHALF
Yy = 008'1(——1,—) (C.6)

The spatially varying "fountain effect” was mathematically
modeled by decreasing the inflow velocity, Vinflow, seen by a blade

element as it passes through the fountain in the following manner:
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. V _V* 1 AMP : uz
Y1 <¥ <¥2; Vinflow = - sin ¥, w2

(C.7)

¥y < ¥ < ¥3; Vinflow = V**(1 - AMP) (C.8)

¥Y -¥Y3 n
. . - lll. - . L
Y3 <¥ <Y¥4; Vinflow=V |:1 AMP Cos(‘l—’4 -¥3 2)]

(C.9)

¥ is the azimuthal position of the blade element, AMP is the
maximum fractional decrease of V*, and V* is the spatially uniform
inflow velocity calculated from momentum theory. In the model
used for the current calculations, AMP = 0.2, reflecting the 20%
decrease in inflow at the mid-chord of the wing. At all other
azimuthal positions, no change was made in the inflow velocity, thus
the total inflow is not fully consistent with the momentum flux

required by momentum analysis.
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Appendix D
Modifications Made to Amiet's Code for Azimuthally

Varying Turbulence

Modifications were made to the broad band noise prediction
code of Amiet27.28.29, Amiet's method computes the sound levels by
resolving the blades rotating motion into rectilinear segments. The
sound generated by each segment is summed to calculate the sound
generated by one blade rotation. It was possible to adapt the code
such that each rectilinear motion has associated with it different
turbulence characteristics. It is also possible to change the
turbulence characteristics with radial station as Amiet's code sums
over 20 radial stations.

Thus Amiet's code was modified such that the reingestion
zone of the rotor disk was made to have higher turbulent intensities
than the rest of the rotor disk. From looking at figure 2.22 which
shows rms velocity inflow contours over the rotor plane, a
reingestion zone was defined. 0° azimuth is defined by the blade
being at the rear of the aircraft or at 6 o'clock looking down from
the rear of the aircraft. The reingestion zone was defined as the
region between azimuthal angles of 250° and 330° and between
radial stations r/R = 0.4 and 1.0. Thus the rotor blade encounters
the reingestion zone when it has rotated 250° from its starting point
at zero azimuthal angle and exits the zone after 330° of rotation.
The calculation of Amiet's code proceeds counter clockwise which

corresponds to the starboard rotor on the model or the XV-15. The
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contour plot of rms inflow velocity, figure 2.22, shows the port rotor
of the model which rotates clockwise.

In the reingestion zone, the turbulent intensities encountered
by the blade and their associated length scale correspond to the
high turbulence levels due to the recirculating fountain. Over the
rest of the disk the turbulent intensity is defined by the ambient
turbulence for which the rms inflow velocity is generally accepted
as 1 m/s. The length scale, Ag, is defined as 90% of the hover
height32,

The code also had to be modified to accept different azimuthal
observer locations. The code begins the calculation at blade position
of 90° azimuth and sums blade motions through 450°, one
revolution. In order to change the azimuthal observer location, the
absolute angle at which the blade encounters the fountain had to be
changed for each observer location. Thus the paradigm used here is
that the observer is always on the minus y axis, 0° or 360° azimuth,
and the blade motion begins on the positive x axis, 90°, and rotates
counter clockwise. The observer location is implemented by
altering the azimuthal angle at which the blade intersects the
reingestion zone. In pseudo code the test for determining if the

blade is in the reingestion zone is:

IF (GAMMA + OBS_ANGLE .GE. 250 .AND.
GAMMA + OBS_ANGLE .LE. 330 .AND.
/R .GE. 0.4) THEN

blade segment is in the reingestion zone
ELSE

blade segment is not in the reingestion zone
END IF
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GAMMA is the blade azimuthal location, 0° to 450°. OBS_ANGLE is
the observer azimuthal angle for the noise prediction. For example,
computing the rear acoustics requires setting OBS_ANGLE to 0°.
Computing the front acoustics requires setting OBS_ANGLE to 180°
etc. The observer angle is defined the user in the input deck.

Also, the I/O procedure Amiet's code was significantly
modified to be run in batch mode on a Micro-Vax. The user is
required to define the calculation via an input file, rather than key
in data at screen prompts. This modification has obvious benefits to
the user. A theory manual and a user manual exist for Amiet's
unmodified code. These are NASA contractor reports29.30,

Lastly, the output of Amiet's code has to be modified for a two
rotor system. The simplest assumption, accurate at observer
distances large compared to the hub separation distance, is to
assume the two rotors are located at the same position at the center
of the aircraft (intersection of the longitudinal and rotor/rotor axis).
For observer locations in the longitudinal plane of symmetry, the
sound power levels due to the two rotor system can be determined
by doubling the power calculated for the one rotor system. This
effectively adds 3 dB to the one rotor calculation. The doubling of
the power is because the blade has the same Mach number
component in the observer direction as it passes through the
reingestion zone. This means that the two rotors are radiated the
same sound power in the observer direction.

A slightly different approach is required for calculating the

sound power radiated by the two rotor system in directions not in
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the longitudinal plane of symmetry. These observer locations
require two calculations, one calculation for the desired observer
location and another calculation for an observer location which is
the reflection of the desired observer location about the longitudinal
plane of symmetry. The two rotor sound power level is then the
sum of the two single rotor sound power level calculations.

The sound power levels predicted by Amiet's code must also
be modified to compare to experiment. Ground plane microphones
measure approximately twice the acoustic pressure which increases
the measured sound power be approximately 6 dB at all
frequencies. Also the measured data may not be normalized to a 1
Hz bandwidth. In this case the predicted values must be increased
by 10 logjo(Af), Af = the bandwidth or spectral resolution of the
experimental data.

For the case of the observer in the longitudinal plane of
symmetry, the sound powers predicted by Amiet's code are
increased by 16.7 dB; 3 dB to account for the two rotor system, 6 dB
to account for the ground plane microphone, and 7.7 dB to account
for the 5.86 Hz spectral resolution of the experimental data

presented here.
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Appendix E
Scaling of Model Inflow Turbulence to XV-15 Inflow

Turbulence

The turbulence characteristics measured on the 1/12 scale
model were scaled to the XV-15 so that they could be used as input
for the broad band noise predictions. It was assumed that the
turbulent fluctuating velocity, urms, and the turbulent convection
velocity, V¢, would scale proportionally with the momentum inflow
velocities. Thus the momentum inflow velocity for the two rotors is
used as the scaling factor for scaling velocities between the model
and the XV-15.

The momentum inflow velocity is defined as:

thrust .
Vmomentum = V 2pArea (E.1)

The thrust is the lifting force generated by the rotor and Area is the
area of the rotor disk. The thrust is known for the XV-15. The
thrust generated by the model rotor was calculated by summing the
contributions to the momentum flux at each grid point over the

rotor disk. ie:

N
(thrust)model = XPAiVi? (E.2)
i=1

And the momentum inflow velocity can be calculated:
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N
2PAiV2

i=1

2pArea (E.3)

(Vmomemum)model =

Vi is the vertical component of velocity measured 1" above the
rotor plane at the i'th grid point and A; is the area of one grid
element. Because of the way in which the vertical component of
velocity was calculated from the Cartesian hot wire measurements,
only the non-zero Vj's were used in the sum. Thus the thrust is
calculated from the momentum flux due to non-zero velocity grid
points. As can be seen from figure 2.21b, the non-zero velocity grid
points were generally inside of the rotor swept area. Also note that
Aj is the same for each grid point. so the equation for the

momentum inflow velocity of the model reduces to:

N
2Vi?
i=1

(Vmomemum)model = IN (E.4)

where N is the number of non-zero grid points. There are 467 non-

N
zero grid points and D V;2 = 24,623 m2/s2. The momentum inflow
i=1

velocity of the is 5.13 my/s.
The turbulent convection velocity of the model was
approximated by the average measured vertical component of

velocity measured 1" above the rotor plane. This was calculated by
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summing the non-zero vertical velocity components Vj, and dividing
by N. The average vertical component of velocity is 6.72 m/s.

The turbulent convection velocity V. was scaled as follows:

(——XL—— =( Ve )x (E.5)
V-15

Vmomemum odel Vmomentum

The turbulent fluctuating velocity urms was scaled as follows:

(——ms——“ =( LIS )x (E.6)
V-15

Vmomentum odel Vmomentum

These are the main results of this section.

The result of calculating the thrust of the model rotor is ~16.5
Newtons. This is approximately 3.7 lbs of thrust which is a
reasonable result. -

This analysis illustrates the deficiencies of using the
momentum inflow velocity as the turbulent convection velocity, a
common approximation. The average vertical velocity over the

rotor disk is ~30% higher than the momentum inflow velocity. This

. . u . . .
means the turbulent intensity, v TBS __ will be ~30% higher if
convection

Vmomentum i used for Veonvection. The turbulent intensity is a
commonly used dimensionless parameter for describing the
magnitude of the turbulent velocity fluctuations. This is an
important consideration as reducing urms by 30% decreases the

predicted sound levels by ~3 dB. Thus calculating urms from the
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turbulent intensity may introduce a significant error if the wrong
convection velocity is used.

Another problem with using Vmomentum instead of
V convection is that is reduces the Mach number of the turbulent
convection velocity. This lowers the predicted sound levels as the
airfoil lift response function is a function of the turbulent
convection velocity Mach number. Decreasing the turbulent
convection velocity Mach number 30% decreases the predicted
levels by ~1.5 dB.

The above analysis gives the following results for scaling the
turbulence characteristics of the model to the XV-15. Figure 2.22
shows the rms velocity contours 1" above the rotor plane. A u,'?
value of 2 m2/s2 is approximately the characteristic value of the
rms velocity fluctuations in the reingestion zone. From above, V.
~6.72 m/s. From equations E.5 and E.6, (V¢o)xv.15 ~22.36 m/s and
(urms)Xv-15 ~4.71 m/s. Recall that (Vmomentum)Xxv-15 = 17.07 m/s

and (Vmomentum)model = 5.13 m/s. Thus the turbulent intensity,

Urms _
Ve = 0.21.

Matching the Von Karman Longitudinal Spectrum to the
measured Longitudinal Spectrum (see appendix F) resulted in a
length scale Af ~0.025 m, approximately the blade chord. The

turbulent length scale for the XV-15 was scaled by the rotor chord
and is 0.356 m. Of course Af may actually be physically related to

other geometrical measures such as the wing or fuselage geometry
which also affects the recirculation. However, these also scale

linearly with size. The ratio of the blade chords is approximately
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the scale of the model ~1/12, so scaling Ag with chord is an accurate
assumption.

These scaling calculations represent the most logical
extrapolation of the experimental data. However, the analysis
would be incomplete without considering the upper and lower
bounds of the scaling calculations. A lower bound would be to use
the lowest turbulent intensity available from the experimental data.
In the reingestion zone defined in the noise prediction code, this
value is ~0.16. An upper bound generated from the experimental
data is ~0.31. This gives upper and lower bound of + or - ~30%. The
STk

predicted sound level is proportional to This means the

upper and lower bounds on the noise predictions are + 3 dB of the
result found by logically scaling the experimental data. Thus the

amount of uncertainty in the calculation is minimal on a dB scale.
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Appendix F
Method for Comparing Measured Longitudinal Spectrum

with Von Karman Longitudinal Spectrum

Calculation of Fji1(k) from measurements:

Data was taken using a hot wire 1" above the rotor plane, 2"
from the tip over the rotor disk on the rotor/rotor axis. The hot
wire was oriented parallel to the rotor disk and longitudinal plane
of symmetry. The hot wire measured 30,000 voltages evenly
spaced in time for one second, 30,000 samples per second. The
voltages were converted to velocities via King's Lawl7. The power
spectrum of this data stream was computed via the program
SPCTRM in Numerical Recipes.36 The output of this program is the
power spectrum per calculated Fourier component. The power
spectral density (per unit frequency) is found by dividing the above
result by Af, the spectral resolution. The correctness of this method
was checked as follows; the first Fourier component, ag, is the
square of the measured mean velocity, and the area under the PSD
curve is the square of the measured rms velocity.

The power spectral density of the hot wire measurement was
reduced to the Longitudinal Spectrum, Fii(k) by the following
method. The PSD(f) was converted from frequency to wave number

by the relation:

2rf

Umcan

=k (F.1)

PRECEDING PAGE BLANK NGT Hipieo



U
The amplitude of the PSD(f) was multiplied by _;1_;_&11 and plotted as

a function of wave number, k. As a final check, integrating the area
under the calculated Fij(k) gives the square of the measured rms
velocity, 4 m2/s2. The above procedure was conducted for ten such
data streams the results averaged to give a better estimate of
Fr1(k).

The measured PSD was reduced to the Longitudinal Spectrum,
F11(k), in order to compare the Von Karman energy spectrum, E(k)
used in the broadband noise prediction code to measured spectra.
This comparison is possible because a simple relation exists
between the energy spectrum and the longitudinal turbulence

spectrum for isotropic turbulence.37

d 1dFy;(k)
ik dk (F.2)

E(k) = k3

The Von Karman Spectrum, E(k) is defined as

E(k) = 5 (F.3)

55 I'(5/6) u'2

AT ke .
6 Vn iy
® TT(1/3) As (F-2)
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A¢ is the turbulent length scale and u' is the rms of the vertical

component of velocity, the square root of the area under the Fii1(k)
curve. For the model, u' = 2.0 m/s and Af = 0.025 m, the length of
the rotor chord.

F11(k) for the Von Karman energy spectrum can be found by
integration and setting the constants of integration to zero. The
result is:

9 I ket

Fi11(k) = == (F.6)
55 k2
[1 | _?2-]5/6

And so Fyi(k) can be compared for the Von Karman and measured

spectra.
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